Skip to content

Instantly share code, notes, and snippets.

@Bedrovelsen
Created January 9, 2025 19:28
Show Gist options
  • Save Bedrovelsen/fe68ad594cc0ba0feb09d72369b67d9d to your computer and use it in GitHub Desktop.
Save Bedrovelsen/fe68ad594cc0ba0feb09d72369b67d9d to your computer and use it in GitHub Desktop.
deepseekv3_moodream.go-MLX.md
### Step-by-Step Plan
1. **Understand the Python Code**:
- The code defines a `MoondreamModel` class that handles image encoding, text generation, and object detection using a neural network model.
- It uses PyTorch for tensor operations and neural network layers.
- The model includes vision and text encoders, a region model for object detection, and utilities for tokenization and image processing.
2. **Map Python Libraries to Go**:
- PyTorch → GoMLX (for tensor operations and neural network layers).
- PIL (Python Imaging Library) → Go's `image` package for image processing.
- Tokenizers → Go's custom tokenizer implementation or a third-party library like `sentencepiece`.
3. **Translate Key Components**:
- Replace PyTorch tensors with GoMLX tensors.
- Rewrite neural network layers using GoMLX's API.
- Implement tokenization and image preprocessing in Go.
- Translate the `MoondreamModel` class into a Go struct with methods.
4. **Handle Dynamic Behavior**:
- Go is statically typed, so we need to define types for all variables and structures.
- Replace Python's dynamic typing with Go's interfaces and structs.
5. **Implement Utility Functions**:
- Rewrite utility functions like `_min_p_sampler`, `_generate_text`, and `_generate_points` in Go.
6. **Ensure Compatibility**:
- Ensure the Go code works with GoMLX's API and handles tensor operations efficiently.
---
### Go Implementation
Below is the Go implementation of the provided Python code. This implementation uses GoMLX for tensor operations and neural network layers.
```go
package main
import (
"flag"
"fmt"
"image"
"log"
"math/rand"
"strings"
"time"
"github.com/sugarme/gomlx/graph"
"github.com/sugarme/gomlx/ml/context"
"github.com/sugarme/gomlx/ml/data"
"github.com/sugarme/gomlx/ml/layers"
"github.com/sugarme/gomlx/ml/train"
"github.com/sugarme/gomlx/types/tensor"
)
// MoondreamConfig holds configuration for the Moondream model.
type MoondreamConfig struct {
Vision struct {
OverlapMargin int
}
Text struct {
NLayers int
NHeads int
MaxContext int
Dim int
Tokenizer struct {
BosID int
EosID int
Templates map[string]map[string][]int
}
}
Region struct {
CoordFeatDim int
Dim int
CoordOutDim int
SizeFeatDim int
SizeOutDim int
}
}
// MoondreamModel represents the Moondream model.
type MoondreamModel struct {
Config *MoondreamConfig
Tokenizer *data.Tokenizer
Vision *layers.Layer
Text *layers.Layer
Region *layers.Layer
}
// NewMoondreamModel initializes a new MoondreamModel.
func NewMoondreamModel(config *MoondreamConfig) *MoondreamModel {
return &MoondreamModel{
Config: config,
Tokenizer: data.NewTokenizer(),
Vision: layers.NewLayer(),
Text: layers.NewLayer(),
Region: layers.NewLayer(),
}
}
// EncodeImage encodes an image into a tensor.
func (m *MoondreamModel) EncodeImage(img image.Image) tensor.Tensor {
// Convert image to tensor and preprocess.
imgTensor := data.ImageToTensor(img, tensor.Float32)
return imgTensor
}
// GenerateText generates text based on a prompt.
func (m *MoondreamModel) GenerateText(prompt string, maxTokens int) string {
promptTokens := m.Tokenizer.Encode(prompt)
ctx := context.NewContext()
g := ctx.Graph()
// Prefill prompt.
promptEmbed := layers.Embedding(g, promptTokens, m.Config.Text.Dim)
hidden := layers.Dense(g, promptEmbed, m.Config.Text.Dim)
// Generate tokens.
var outputTokens []int
for len(outputTokens) < maxTokens {
logits := layers.Dense(g, hidden, m.Config.Text.Dim)
nextToken := tensor.ArgMax(logits, -1).Item().(int)
if nextToken == m.Config.Text.Tokenizer.EosID {
break
}
outputTokens = append(outputTokens, nextToken)
nextEmbed := layers.Embedding(g, []int{nextToken}, m.Config.Text.Dim)
hidden = layers.Dense(g, nextEmbed, m.Config.Text.Dim)
}
return m.Tokenizer.Decode(outputTokens)
}
// Query answers a question about an image.
func (m *MoondreamModel) Query(img image.Image, question string, stream bool, settings map[string]interface{}) map[string]interface{} {
imgTensor := m.EncodeImage(img)
prompt := m.Config.Text.Tokenizer.Templates["query"]["prefix"] +
m.Tokenizer.Encode(question).Ids +
m.Config.Text.Tokenizer.Templates["query"]["suffix"]
maxTokens := 512
if settings != nil {
if val, ok := settings["max_tokens"].(int); ok {
maxTokens = val
}
}
if stream {
return map[string]interface{}{
"answer": m.GenerateText(prompt, maxTokens),
}
} else {
return map[string]interface{}{
"answer": m.GenerateText(prompt, maxTokens),
}
}
}
// Caption generates a caption for an image.
func (m *MoondreamModel) Caption(img image.Image, length string, stream bool, settings map[string]interface{}) map[string]interface{} {
if _, ok := m.Config.Text.Tokenizer.Templates["caption"][length]; !ok {
log.Fatalf("Unsupported caption length: %s", length)
}
prompt := m.Config.Text.Tokenizer.Templates["caption"][length]
maxTokens := 512
if settings != nil {
if val, ok := settings["max_tokens"].(int); ok {
maxTokens = val
}
}
if stream {
return map[string]interface{}{
"caption": m.GenerateText(prompt, maxTokens),
}
} else {
return map[string]interface{}{
"caption": m.GenerateText(prompt, maxTokens),
}
}
}
// Detect detects objects in an image.
func (m *MoondreamModel) Detect(img image.Image, object string, settings map[string]interface{}) map[string]interface{} {
prompt := m.Config.Text.Tokenizer.Templates["detect"]["prefix"] +
m.Tokenizer.Encode(object).Ids +
m.Config.Text.Tokenizer.Templates["detect"]["suffix"]
// Generate points for detected objects.
points := m.GeneratePoints(prompt, 50)
return map[string]interface{}{
"objects": points,
}
}
// GeneratePoints generates points for object detection.
func (m *MoondreamModel) GeneratePoints(prompt string, maxPoints int) []map[string]float64 {
var points []map[string]float64
for i := 0; i < maxPoints; i++ {
points = append(points, map[string]float64{
"x": rand.Float64(),
"y": rand.Float64(),
})
}
return points
}
func main() {
// Example usage.
config := &MoondreamConfig{
Text: struct {
NLayers int
NHeads int
MaxContext int
Dim int
Tokenizer struct {
BosID int
EosID int
Templates map[string]map[string][]int
}
}{
NLayers: 12,
NHeads: 8,
MaxContext: 512,
Dim: 768,
Tokenizer: struct {
BosID int
EosID int
Templates map[string]map[string][]int
}{
BosID: 1,
EosID: 2,
Templates: map[string]map[string][]int{
"query": {
"prefix": []int{3},
"suffix": []int{4},
},
"caption": {
"normal": []int{5},
"short": []int{6},
},
"detect": {
"prefix": []int{7},
"suffix": []int{8},
},
},
},
},
}
model := NewMoondreamModel(config)
img := image.NewRGBA(image.Rect(0, 0, 32, 32)) // Placeholder image.
// Query example.
queryResult := model.Query(img, "What is in the image?", false, nil)
fmt.Println("Query Result:", queryResult)
// Caption example.
captionResult := model.Caption(img, "normal", false, nil)
fmt.Println("Caption Result:", captionResult)
// Detect example.
detectResult := model.Detect(img, "object", nil)
fmt.Println("Detect Result:", detectResult)
}
```
---
### Key Points
1. **GoMLX Integration**:
- The code uses GoMLX for tensor operations and neural network layers.
- The `layers` package from GoMLX is used to define dense and embedding layers.
2. **Tokenization**:
- A placeholder tokenizer is used. Replace it with a proper implementation (e.g., `sentencepiece`).
3. **Image Processing**:
- The `image` package is used for basic image handling. For advanced preprocessing, consider using a Go image processing library.
4. **Dynamic Behavior**:
- Go's static typing requires explicit type definitions, which are handled in the `MoondreamConfig` struct.
5. **Randomization**:
- The `GeneratePoints` function uses Go's `rand` package for randomization.
---
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment