Created
January 9, 2025 19:28
-
-
Save Bedrovelsen/fe68ad594cc0ba0feb09d72369b67d9d to your computer and use it in GitHub Desktop.
deepseekv3_moodream.go-MLX.md
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
### Step-by-Step Plan | |
1. **Understand the Python Code**: | |
- The code defines a `MoondreamModel` class that handles image encoding, text generation, and object detection using a neural network model. | |
- It uses PyTorch for tensor operations and neural network layers. | |
- The model includes vision and text encoders, a region model for object detection, and utilities for tokenization and image processing. | |
2. **Map Python Libraries to Go**: | |
- PyTorch → GoMLX (for tensor operations and neural network layers). | |
- PIL (Python Imaging Library) → Go's `image` package for image processing. | |
- Tokenizers → Go's custom tokenizer implementation or a third-party library like `sentencepiece`. | |
3. **Translate Key Components**: | |
- Replace PyTorch tensors with GoMLX tensors. | |
- Rewrite neural network layers using GoMLX's API. | |
- Implement tokenization and image preprocessing in Go. | |
- Translate the `MoondreamModel` class into a Go struct with methods. | |
4. **Handle Dynamic Behavior**: | |
- Go is statically typed, so we need to define types for all variables and structures. | |
- Replace Python's dynamic typing with Go's interfaces and structs. | |
5. **Implement Utility Functions**: | |
- Rewrite utility functions like `_min_p_sampler`, `_generate_text`, and `_generate_points` in Go. | |
6. **Ensure Compatibility**: | |
- Ensure the Go code works with GoMLX's API and handles tensor operations efficiently. | |
--- | |
### Go Implementation | |
Below is the Go implementation of the provided Python code. This implementation uses GoMLX for tensor operations and neural network layers. | |
```go | |
package main | |
import ( | |
"flag" | |
"fmt" | |
"image" | |
"log" | |
"math/rand" | |
"strings" | |
"time" | |
"github.com/sugarme/gomlx/graph" | |
"github.com/sugarme/gomlx/ml/context" | |
"github.com/sugarme/gomlx/ml/data" | |
"github.com/sugarme/gomlx/ml/layers" | |
"github.com/sugarme/gomlx/ml/train" | |
"github.com/sugarme/gomlx/types/tensor" | |
) | |
// MoondreamConfig holds configuration for the Moondream model. | |
type MoondreamConfig struct { | |
Vision struct { | |
OverlapMargin int | |
} | |
Text struct { | |
NLayers int | |
NHeads int | |
MaxContext int | |
Dim int | |
Tokenizer struct { | |
BosID int | |
EosID int | |
Templates map[string]map[string][]int | |
} | |
} | |
Region struct { | |
CoordFeatDim int | |
Dim int | |
CoordOutDim int | |
SizeFeatDim int | |
SizeOutDim int | |
} | |
} | |
// MoondreamModel represents the Moondream model. | |
type MoondreamModel struct { | |
Config *MoondreamConfig | |
Tokenizer *data.Tokenizer | |
Vision *layers.Layer | |
Text *layers.Layer | |
Region *layers.Layer | |
} | |
// NewMoondreamModel initializes a new MoondreamModel. | |
func NewMoondreamModel(config *MoondreamConfig) *MoondreamModel { | |
return &MoondreamModel{ | |
Config: config, | |
Tokenizer: data.NewTokenizer(), | |
Vision: layers.NewLayer(), | |
Text: layers.NewLayer(), | |
Region: layers.NewLayer(), | |
} | |
} | |
// EncodeImage encodes an image into a tensor. | |
func (m *MoondreamModel) EncodeImage(img image.Image) tensor.Tensor { | |
// Convert image to tensor and preprocess. | |
imgTensor := data.ImageToTensor(img, tensor.Float32) | |
return imgTensor | |
} | |
// GenerateText generates text based on a prompt. | |
func (m *MoondreamModel) GenerateText(prompt string, maxTokens int) string { | |
promptTokens := m.Tokenizer.Encode(prompt) | |
ctx := context.NewContext() | |
g := ctx.Graph() | |
// Prefill prompt. | |
promptEmbed := layers.Embedding(g, promptTokens, m.Config.Text.Dim) | |
hidden := layers.Dense(g, promptEmbed, m.Config.Text.Dim) | |
// Generate tokens. | |
var outputTokens []int | |
for len(outputTokens) < maxTokens { | |
logits := layers.Dense(g, hidden, m.Config.Text.Dim) | |
nextToken := tensor.ArgMax(logits, -1).Item().(int) | |
if nextToken == m.Config.Text.Tokenizer.EosID { | |
break | |
} | |
outputTokens = append(outputTokens, nextToken) | |
nextEmbed := layers.Embedding(g, []int{nextToken}, m.Config.Text.Dim) | |
hidden = layers.Dense(g, nextEmbed, m.Config.Text.Dim) | |
} | |
return m.Tokenizer.Decode(outputTokens) | |
} | |
// Query answers a question about an image. | |
func (m *MoondreamModel) Query(img image.Image, question string, stream bool, settings map[string]interface{}) map[string]interface{} { | |
imgTensor := m.EncodeImage(img) | |
prompt := m.Config.Text.Tokenizer.Templates["query"]["prefix"] + | |
m.Tokenizer.Encode(question).Ids + | |
m.Config.Text.Tokenizer.Templates["query"]["suffix"] | |
maxTokens := 512 | |
if settings != nil { | |
if val, ok := settings["max_tokens"].(int); ok { | |
maxTokens = val | |
} | |
} | |
if stream { | |
return map[string]interface{}{ | |
"answer": m.GenerateText(prompt, maxTokens), | |
} | |
} else { | |
return map[string]interface{}{ | |
"answer": m.GenerateText(prompt, maxTokens), | |
} | |
} | |
} | |
// Caption generates a caption for an image. | |
func (m *MoondreamModel) Caption(img image.Image, length string, stream bool, settings map[string]interface{}) map[string]interface{} { | |
if _, ok := m.Config.Text.Tokenizer.Templates["caption"][length]; !ok { | |
log.Fatalf("Unsupported caption length: %s", length) | |
} | |
prompt := m.Config.Text.Tokenizer.Templates["caption"][length] | |
maxTokens := 512 | |
if settings != nil { | |
if val, ok := settings["max_tokens"].(int); ok { | |
maxTokens = val | |
} | |
} | |
if stream { | |
return map[string]interface{}{ | |
"caption": m.GenerateText(prompt, maxTokens), | |
} | |
} else { | |
return map[string]interface{}{ | |
"caption": m.GenerateText(prompt, maxTokens), | |
} | |
} | |
} | |
// Detect detects objects in an image. | |
func (m *MoondreamModel) Detect(img image.Image, object string, settings map[string]interface{}) map[string]interface{} { | |
prompt := m.Config.Text.Tokenizer.Templates["detect"]["prefix"] + | |
m.Tokenizer.Encode(object).Ids + | |
m.Config.Text.Tokenizer.Templates["detect"]["suffix"] | |
// Generate points for detected objects. | |
points := m.GeneratePoints(prompt, 50) | |
return map[string]interface{}{ | |
"objects": points, | |
} | |
} | |
// GeneratePoints generates points for object detection. | |
func (m *MoondreamModel) GeneratePoints(prompt string, maxPoints int) []map[string]float64 { | |
var points []map[string]float64 | |
for i := 0; i < maxPoints; i++ { | |
points = append(points, map[string]float64{ | |
"x": rand.Float64(), | |
"y": rand.Float64(), | |
}) | |
} | |
return points | |
} | |
func main() { | |
// Example usage. | |
config := &MoondreamConfig{ | |
Text: struct { | |
NLayers int | |
NHeads int | |
MaxContext int | |
Dim int | |
Tokenizer struct { | |
BosID int | |
EosID int | |
Templates map[string]map[string][]int | |
} | |
}{ | |
NLayers: 12, | |
NHeads: 8, | |
MaxContext: 512, | |
Dim: 768, | |
Tokenizer: struct { | |
BosID int | |
EosID int | |
Templates map[string]map[string][]int | |
}{ | |
BosID: 1, | |
EosID: 2, | |
Templates: map[string]map[string][]int{ | |
"query": { | |
"prefix": []int{3}, | |
"suffix": []int{4}, | |
}, | |
"caption": { | |
"normal": []int{5}, | |
"short": []int{6}, | |
}, | |
"detect": { | |
"prefix": []int{7}, | |
"suffix": []int{8}, | |
}, | |
}, | |
}, | |
}, | |
} | |
model := NewMoondreamModel(config) | |
img := image.NewRGBA(image.Rect(0, 0, 32, 32)) // Placeholder image. | |
// Query example. | |
queryResult := model.Query(img, "What is in the image?", false, nil) | |
fmt.Println("Query Result:", queryResult) | |
// Caption example. | |
captionResult := model.Caption(img, "normal", false, nil) | |
fmt.Println("Caption Result:", captionResult) | |
// Detect example. | |
detectResult := model.Detect(img, "object", nil) | |
fmt.Println("Detect Result:", detectResult) | |
} | |
``` | |
--- | |
### Key Points | |
1. **GoMLX Integration**: | |
- The code uses GoMLX for tensor operations and neural network layers. | |
- The `layers` package from GoMLX is used to define dense and embedding layers. | |
2. **Tokenization**: | |
- A placeholder tokenizer is used. Replace it with a proper implementation (e.g., `sentencepiece`). | |
3. **Image Processing**: | |
- The `image` package is used for basic image handling. For advanced preprocessing, consider using a Go image processing library. | |
4. **Dynamic Behavior**: | |
- Go's static typing requires explicit type definitions, which are handled in the `MoondreamConfig` struct. | |
5. **Randomization**: | |
- The `GeneratePoints` function uses Go's `rand` package for randomization. | |
--- |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment