Created
May 1, 2025 08:37
-
-
Save ChocopieKewpie/7ee103b3d8c8d54151d66486c6b109d7 to your computer and use it in GitHub Desktop.
Krigging for isopleths
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import geopandas as gpd | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from pykrige.ok import OrdinaryKriging | |
from sklearn.linear_model import LinearRegression | |
import rasterio | |
from rasterio.transform import from_origin | |
gdf = gpd.read_file("your_input_points.gpkg") | |
gdf = gdf.to_crs(2193) | |
gdf = gdf.dropna(subset=['thickness']) | |
x = gdf.geometry.x.values | |
y = gdf.geometry.y.values | |
log_thick = np.log10(gdf['thickness'].values + 1) | |
X = np.vstack([x, y]).T | |
trend_model = LinearRegression().fit(X, log_thick) | |
trend = trend_model.predict(X) | |
residuals = log_thick - trend | |
xi = np.linspace(x.min(), x.max(), 200) | |
yi = np.linspace(y.max(), y.min(), 200) | |
grid_x, grid_y = np.meshgrid(xi, yi) | |
OK = OrdinaryKriging( | |
x, y, residuals, | |
variogram_model='spherical', | |
verbose=False, | |
enable_plotting=False | |
) | |
res_kriged, ss = OK.execute('grid', xi, yi) | |
grid_coords = np.vstack([grid_x.ravel(), grid_y.ravel()]).T | |
grid_trend = trend_model.predict(grid_coords).reshape(grid_x.shape) #Predicted log(thickness) from X, Y trend | |
grid_log_thickness = grid_trend + res_kriged #Combined prediction in log space | |
grid_thickness = 10**grid_log_thickness - 1 #Final thickness prediction, removing log | |
grid_thickness = np.clip(grid_thickness, 0, None) #Final thickness prediction, removing negative values | |
grid_trend_thickness = 10**grid_trend - 1 #Trend-only thickness (no kriging), removing log | |
grid_trend_thickness = np.clip(grid_trend_thickness, 0, None)#Trend-only thickness (no kriging), removing negative values | |
plt.figure(figsize=(10, 6)) | |
trend_contour = plt.contourf(grid_x, grid_y, grid_trend_thickness, levels=20, cmap='viridis') | |
plt.colorbar(trend_contour, label='Trend Thickness') | |
plt.scatter(x, y, c='black', s=10, label='Data points') | |
plt.title('Trend Surface (Log-linear on X/Y)') | |
plt.xlabel('Easting (m)') | |
plt.ylabel('Northing (m)') | |
plt.axis('equal') | |
plt.legend() | |
plt.tight_layout() | |
plt.show() | |
plt.figure(figsize=(10, 6)) | |
interp_contour = plt.contourf(grid_x, grid_y, grid_thickness, levels=20, cmap='plasma') | |
plt.colorbar(interp_contour, label='Interpolated Thickness') | |
plt.scatter(x, y, c='black', s=10, label='Data points') | |
plt.title('Full Interpolated Thickness (Trend + Residuals)') | |
plt.xlabel('Easting (m)') | |
plt.ylabel('Northing (m)') | |
plt.axis('equal') | |
plt.legend() | |
plt.tight_layout() | |
plt.show() | |
res_x = (xi[-1] - xi[0]) / (len(xi) - 1) | |
res_y = (yi[0] - yi[-1]) / (len(yi) - 1) | |
transform = from_origin( | |
xi[0], | |
yi[0], | |
res_x, | |
res_y | |
) | |
with rasterio.open( | |
"trend_thickness.tif", | |
"w", | |
driver="GTiff", | |
height=grid_trend_thickness.shape[0], | |
width=grid_trend_thickness.shape[1], | |
count=1, | |
dtype=grid_trend_thickness.dtype, | |
crs=gdf.crs, | |
transform=transform, | |
) as dst: | |
dst.write(grid_trend_thickness, 1) | |
with rasterio.open( | |
"interpolated_thickness.tif", | |
"w", | |
driver="GTiff", | |
height=grid_thickness.shape[0], | |
width=grid_thickness.shape[1], | |
count=1, | |
dtype=grid_thickness.dtype, | |
crs=gdf.crs, | |
transform=transform, | |
) as dst: | |
dst.write(grid_thickness, 1) | |
print("Exported GeoTIFFs: trend_thickness.tif and interpolated_thickness.tif") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment