Skip to content

Instantly share code, notes, and snippets.

@DATAUNIRIO
Created October 22, 2024 15:42
Show Gist options
  • Save DATAUNIRIO/ed331960cd53aa6f2dbf32df75e048f4 to your computer and use it in GitHub Desktop.
Save DATAUNIRIO/ed331960cd53aa6f2dbf32df75e048f4 to your computer and use it in GitHub Desktop.
# https://stats.oarc.ucla.edu/other/mult-pkg/faq/general/faq-how-do-i-interpret-odds-ratios-in-logistic-regression/
dados = matrix(c(74, 17, 77, 32), ncol = 2)
dados
dimnames(dados) <- list(voto = c("Normal","Menção Honrosa"),
sexo = c("Masculino","Feminino"))
dados
mosaicplot(dados, color = c("skyblue", "pink"), xlab ="Menção Honrosa",
ylab = "Sexo")
prob_m = 17/(17+74+32+77)
prob_f = 32/(17+74+32+77)
odds_m = 17/74
odds_f = 32/77
odds_f/odds_m
fisher.test(dados)
#------------------------------------------------------------------------------------------------
dados = matrix(c(69, 13, 33, 2), ncol = 2)
dimnames(dados) <- list(sexo = c("Feminino", "Masculino"),
voto = c("Kelmon","Não Kelmon"))
dados
mosaicplot(dados, color = c("darkred", "gold"), xlab ="Sexo",
ylab = "Voto no candidato padre")
aa = chisq.test(dados)
aa$expected
fisher.test(dados)
# sample odds-ratio estimate
69*2/(13*33)
a = 69/33
b = 13/2
a/b
b/a
#------------------------------------------------------------------------------------------------
load(url("https://github.com/DATAUNIRIO/Base_de_dados/raw/refs/heads/master/Titanic.RData"))
tabela <- table(Titanic$Sexo, Titanic$Sobreviveu)
tabela
mosaicplot(tabela, color = c("darkred", "gold"), xlab ="Sexo", ylab = "Survivência")
TF <- fisher.test(tabela)
TF
TF
cf = 344/126
cf
cm = 366/1364
cm
cf/cm
cm/cf
# This shows that the odds ratio is about 10—the odds of a female surviving were about ten times the odds of a male surviving.
# This is (female survival / female death) / (male survival / male death).
# The order of the values in the odds ratios is determined by the order of the values of each variable;by default R uses alphabetical order.
# https://whitlockschluter3e.zoology.ubc.ca/RLabs/R_tutorial_Contingency_analysis.html#odds_ratios
#Titanic$vivo = ifelse(Titanic$Sobreviveu=="Sobreviveu",1,0)
#Titanic$aaa = ifelse(Titanic$Sexo=="Masculino",0,1)
#modelo = glm(vivo ~ aaa, data = Titanic)
#summary(modelo)
#exp(0.52035)
# razao de chances condicionais 68% maior de sobreviver
#--------------------------------------------------------------
### Tabela para o teste
Tabela <- as.table(rbind(c(2,3,10,6,1), c(1,6,7,14,12)))
### Rótulos para tabela
dimnames(Tabela) <- list(sexo = c("Feminino", "Masculino"),
likert = c("Concordo Totalmente","Concordo",
"Nem concordo nem discordo",
"Discordo", "Discordo Totalmente"))
Tabela
Teste_fisher_hybrid <- fisher.test(Tabela, hybrid=TRUE)
Teste_fisher_hybrid
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment