Created
December 27, 2016 05:43
-
-
Save DollarAkshay/0453d8ef144b2dd35056180229ec42f4 to your computer and use it in GitHub Desktop.
Solving BipedalWalkerHardcore v2 using Genetic Algorithm and Neural Networks
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import time, math, random, bisect, copy | |
import gym | |
import numpy as np | |
class NeuralNet : | |
def __init__(self, nodeCount): | |
self.fitness = 0.0 | |
self.nodeCount = nodeCount | |
self.weights = [] | |
self.biases = [] | |
for i in range(len(nodeCount) - 1): | |
self.weights.append( np.random.uniform(low=-1, high=1, size=(nodeCount[i], nodeCount[i+1])).tolist() ) | |
self.biases.append( np.random.uniform(low=-1, high=1, size=(nodeCount[i+1])).tolist()) | |
def printWeightsandBiases(self): | |
print("--------------------------------") | |
print("Weights :\n[", end="") | |
for i in range(len(self.weights)): | |
print("\n [ ", end="") | |
for j in range(len(self.weights[i])): | |
if j!=0: | |
print("\n ", end="") | |
print("[", end="") | |
for k in range(len(self.weights[i][j])): | |
print(" %5.2f," % (self.weights[i][j][k]), end="") | |
print("\b],", end="") | |
print("\b ],") | |
print("\n]") | |
print("\nBiases :\n[", end="") | |
for i in range(len(self.biases)): | |
print("\n [ ", end="") | |
for j in range(len(self.biases[i])): | |
print(" %5.2f," % (self.biases[i][j]), end="") | |
print("\b],", end="") | |
print("\b \n]\n--------------------------------\n") | |
def getOutput(self, input): | |
output = input | |
for i in range(len(self.nodeCount)-1): | |
output = np.reshape( np.matmul(output, self.weights[i]) + self.biases[i], (self.nodeCount[i+1])) | |
return output | |
class Population : | |
def __init__(self, populationCount, mutationRate, nodeCount): | |
self.nodeCount = nodeCount | |
self.popCount = populationCount | |
self.m_rate = mutationRate | |
self.population = [ NeuralNet(nodeCount) for i in range(populationCount)] | |
def createChild(self, nn1, nn2): | |
child = NeuralNet(self.nodeCount) | |
for i in range(len(child.weights)): | |
for j in range(len(child.weights[i])): | |
for k in range(len(child.weights[i][j])): | |
if random.random() > self.m_rate: | |
if random.random() < nn1.fitness / (nn1.fitness+nn2.fitness): | |
child.weights[i][j][k] = nn1.weights[i][j][k] | |
else : | |
child.weights[i][j][k] = nn2.weights[i][j][k] | |
for i in range(len(child.biases)): | |
for j in range(len(child.biases[i])): | |
if random.random() > self.m_rate: | |
if random.random() < nn1.fitness / (nn1.fitness+nn2.fitness): | |
child.biases[i][j] = nn1.biases[i][j] | |
else: | |
child.biases[i][j] = nn2.biases[i][j] | |
return child | |
def createNewGeneration(self, bestNN): | |
nextGen = [] | |
self.population.sort(key=lambda x: x.fitness, reverse=True) | |
for i in range(self.popCount): | |
if random.random() < float(self.popCount-i)/self.popCount: | |
nextGen.append(copy.deepcopy(self.population[i])); | |
fitnessSum = [0] | |
minFit = min([i.fitness for i in nextGen]) | |
for i in range(len(nextGen)): | |
fitnessSum.append(fitnessSum[i]+(nextGen[i].fitness-minFit)**4) | |
while(len(nextGen) < self.popCount): | |
r1 = random.uniform(0, fitnessSum[len(fitnessSum)-1] ) | |
r2 = random.uniform(0, fitnessSum[len(fitnessSum)-1] ) | |
i1 = bisect.bisect_left(fitnessSum, r1) | |
i2 = bisect.bisect_left(fitnessSum, r2) | |
if 0 <= i1 < len(nextGen) and 0 <= i2 < len(nextGen) : | |
nextGen.append( self.createChild(nextGen[i1], nextGen[i2]) ) | |
else : | |
print("Index Error "); | |
print("Sum Array =",fitnessSum) | |
print("Randoms = ", r1, r2) | |
print("Indices = ", i1, i2) | |
self.population.clear() | |
self.population = nextGen | |
def sigmoid(x): | |
return 1.0/(1.0 + np.exp(-x)) | |
def replayBestBots(bestNeuralNets, steps, sleep): | |
choice = input("Do you want to watch the replay ?[Y/N] : ") | |
if choice=='Y' or choice=='y': | |
for i in range(len(bestNeuralNets)): | |
if (i+1)%steps == 0 : | |
observation = env.reset() | |
totalReward = 0 | |
for step in range(MAX_STEPS): | |
env.render() | |
time.sleep(sleep) | |
action = bestNeuralNets[i].getOutput(observation) | |
observation, reward, done, info = env.step(action) | |
totalReward += reward | |
if done: | |
break | |
print("Generation %3d | Expected Fitness of %4d | Actual Fitness = %4d" % (i+1, bestNeuralNets[i].fitness, totalReward)) | |
def recordBestBots(bestNeuralNets): | |
print("\n Recording Best Bots ") | |
print("---------------------") | |
env.monitor.start('Artificial Intelligence/'+GAME, force=True) | |
for i in range(len(bestNeuralNets)): | |
totalReward = 0 | |
observation = env.reset() | |
for step in range(MAX_STEPS): | |
env.render() | |
action = bestNeuralNets[i].getOutput(observation) | |
observation, reward, done, info = env.step(action) | |
totalReward += reward | |
if done: | |
break | |
print("Generation %3d | Expected Fitness of %4d | Actual Fitness = %4d" % (i+1, bestNeuralNets[i].fitness, totalReward)) | |
env.monitor.close() | |
def uploadSimulation(): | |
API_KEY = open('/home/dollarakshay/Documents/API Keys/Open AI Key.txt', 'r').read().rstrip() | |
gym.upload('Artificial Intelligence/'+GAME, api_key=API_KEY) | |
def mapRange(value, leftMin, leftMax, rightMin, rightMax): | |
# Figure out how 'wide' each range is | |
leftSpan = leftMax - leftMin | |
rightSpan = rightMax - rightMin | |
# Convert the left range into a 0-1 range (float) | |
valueScaled = float(value - leftMin) / float(leftSpan) | |
# Convert the 0-1 range into a value in the right range. | |
return rightMin + (valueScaled * rightSpan) | |
def normalizeArray(aVal, aMin, aMax): | |
res = [] | |
for i in range(len(aVal)): | |
res.append( mapRange(aVal[i], aMin[i], aMax[i], -1, 1) ) | |
return res | |
def scaleArray(aVal, aMin, aMax): | |
res = [] | |
for i in range(len(aVal)): | |
res.append( mapRange(aVal[i], -1, 1, aMin[i], aMax[i]) ) | |
return res | |
GAME = 'BipedalWalkerHardcore-v2' | |
env = gym.make(GAME) | |
MAX_STEPS = env.spec.timestep_limit | |
MAX_GENERATIONS = 1000 | |
POPULATION_COUNT = 100 | |
MUTATION_RATE = 0.01 | |
in_dimen = env.observation_space.shape[0] | |
out_dimen = env.action_space.shape[0] | |
obsMin = env.observation_space.low | |
obsMax = env.observation_space.high | |
actionMin = env.action_space.low | |
actionMax = env.action_space.high | |
pop = Population(POPULATION_COUNT, MUTATION_RATE, [in_dimen, 13, 8, 13, out_dimen]) | |
bestNeuralNets = [] | |
print("\nObservation\n--------------------------------") | |
print("Shape :", in_dimen, " \n High :", obsMax, " \n Low :", obsMin) | |
print("\nAction\n--------------------------------") | |
print("Shape :", out_dimen, " | High :", actionMax, " | Low :", actionMin,"\n") | |
for gen in range(MAX_GENERATIONS): | |
genAvgFit = 0.0 | |
minFit = 1000000 | |
maxFit = -1000000 | |
maxNeuralNet = None | |
for cr, nn in enumerate(pop.population): | |
observation = env.reset() | |
totalReward = 0 | |
for step in range(MAX_STEPS): | |
if cr==0: | |
env.render() | |
action = nn.getOutput(observation) | |
observation, reward, done, info = env.step(action) | |
totalReward += reward | |
if done: | |
break | |
nn.fitness = totalReward | |
minFit = min(minFit, nn.fitness) | |
genAvgFit += nn.fitness | |
if nn.fitness > maxFit : | |
maxFit = nn.fitness | |
maxNeuralNet = copy.deepcopy(nn); | |
bestNeuralNets.append(maxNeuralNet) | |
genAvgFit/=pop.popCount | |
print("Generation : %3d | Min : %5.0f | Avg : %5.0f | Max : %5.0f " % (gen+1, minFit, genAvgFit, maxFit) ) | |
pop.createNewGeneration(maxNeuralNet) | |
recordBestBots(bestNeuralNets) | |
uploadSimulation() | |
replayBestBots(bestNeuralNets, max(1, int(math.ceil(MAX_GENERATIONS/10.0))), 0) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment