-
-
Save Ellrion/9c2760b1b97b6916650a105b12197792 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<?php | |
/** | |
* Naive Bayes classifier | |
*/ | |
include __DIR__ . '/../vendor/autoload.php'; | |
function train($samples) | |
{ | |
$samples_count = count($samples); | |
$classes = []; | |
$freq = []; | |
foreach ($samples as $sample) { | |
$label = $sample['label']; | |
$classes[$label] = ($classes[$label] ?? 0) + 1; | |
foreach ($sample['features'] as $feature) { | |
$freq[$label][$feature] = ($freq[$label][$feature] ?? 0) + 1; | |
} | |
} | |
foreach ($freq as $label => $features) { | |
foreach ($features as $feature => $count) { | |
$freq[$label][$feature] = $count / $classes[$label]; | |
} | |
} | |
foreach ($classes as $label => $count) { | |
$classes[$label] = $count / $samples_count; | |
} | |
return (object) compact('classes', 'freq'); | |
} | |
function classification($classifier, $features) | |
{ | |
$res = ['m' => PHP_INT_MAX, 'label' => null]; | |
foreach ($classifier->classes as $label => $p) { | |
$m = -log($p) + collect($features)->sum(function ($feature) use ($classifier, $label) { | |
return - log(array_get($classifier->freq, "{$label}.{$feature}", 10**(-7))); | |
}); | |
if ($m < $res['m']) { | |
$res = ['m' => $m, 'label' => $label]; | |
} | |
} | |
return $res['label']; | |
} | |
function extract_features($data) | |
{ | |
return str_split($data); | |
} | |
$samples = [ | |
['label' => 'd', 'value' => '234'], | |
['label' => 'd', 'value' => 'e14'], | |
['label' => 'd', 'value' => '95094'], | |
['label' => 'd', 'value' => '456'], | |
['label' => 'w', 'value' => 'sdfsldf'], | |
['label' => 'w', 'value' => 'pwper'], | |
['label' => 'w', 'value' => 'eee'], | |
['label' => 'w', 'value' => 'ee1sd'], | |
['label' => 'w', 'value' => 'ee12d'], | |
]; | |
foreach ($samples as &$sample) { | |
$sample['features'] = extract_features($sample['value']); | |
} | |
unset($sample); | |
$classifier = train($samples); | |
$tests = [ | |
'180456', | |
'mcnxc', | |
's89sf66sdf', | |
'001u', | |
'e0091', | |
'ccc', | |
]; | |
foreach ($tests as $test) { | |
echo $test . ': ' . classification($classifier, extract_features($test)) . PHP_EOL; | |
} | |
/** | |
* output: | |
* 180456: d | |
* mcnxc: w | |
* s89sf66sdf: w | |
* 001u: d | |
* e0091: d | |
* ccc: w | |
*/ |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment