Architecture | NVIDIA GPU | Instance type | Instance name | Number of GPUs | GPU Memory (per GPU) | GPU Interconnect (NVLink / PCIe) | Thermal Design Power (TDP) from nvidia-smi |
Tensor Cores (mixed-precision) | Precision Support | CPU Type | Nitro based |
---|---|---|---|---|---|---|---|---|---|---|---|
Ampere | A100 | P4 | p4d.24xlarge | 8 | 40 GB | NVLink gen 3 (600 GB/s) | 400W | Tensor Cores (Gen 3) | FP64, FP32, FP16, INT8, BF16, TF32 | Intel Xeon Scalable (Cascade Lake) | Yes |
Ampere | A10G | G5 | g5.xlarge | 1 | 24 GB | NA ( |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
# create and train a keras neural network | |
classifier = tf.keras.models.Sequential([ | |
tf.keras.layers.Dense(units=1, input_shape=[1]), | |
tf.keras.layers.Dense(units=28, activation='relu'), | |
tf.keras.layers.Dense(units=1) | |
]) | |
classifier.compile(optimizer='sgd', loss='mean_squared_error') | |
classifier.fit(x=[-1, 0, 1], y=[-3, -1, 1], epochs=5) |