Created
August 7, 2019 16:45
-
-
Save HughSt/380c4c11c41b6ac5fcfca138e3c84942 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(mgcv) | |
library(raster) | |
library(magrittr) | |
library(sp) | |
# Generate a dummy probability surface using Swaziland as an example | |
swz_elev <- raster::getData('alt', country="SWZ") | |
swz_prob <- swz_elev / cellStats(swz_elev, max) | |
# Generate some random points to act as sampling sites | |
candidate_sites <- coordinates(swz_elev)[which(!is.na(swz_elev[])),] | |
sample_pixels <- sample(1:nrow(candidate_sites), 100) | |
sampling_sites <- candidate_sites[sample_pixels,] %>% as.data.frame() | |
# Take a binomial sample of 100 at each site | |
sampling_sites$prob <- raster::extract(swz_prob, sampling_sites[,c("x", "y")]) | |
sampling_sites$n_pos <- rbinom(100, 100, sampling_sites$prob ) | |
sampling_sites$n_neg <- 100 - sampling_sites$n_pos | |
# Fit a GAM with bivaruate smooth on lat/lng | |
gam_mod <- gam(cbind(n_pos, n_neg) ~ s(x, y, bs="gp"), | |
data = sampling_sites, | |
family = "binomial") | |
# Look at predicted mean | |
prediction_data <- as.data.frame(candidate_sites) | |
predicted_prob <- predict(gam_mod, prediction_data, type="response") | |
predicted_prob_raster <- swz_elev | |
predicted_prob_raster[which(!is.na(swz_elev[]))] <- predicted_prob | |
plot(predicted_prob_raster) | |
# Simulate from the posterior | |
Cg <- predict(gam_mod, prediction_data, type = "lpmatrix") | |
sims <- rmvn(1000, mu = coef(gam_mod), V = vcov(gam_mod, unconditional = TRUE)) | |
fits <- Cg %*% t(sims) | |
fits_prob <- exp(fits) / (1 + exp(fits)) | |
#### Aggregate simulated values over districts | |
# Get district boundary polygons | |
swz_districts <- raster::getData("GADM", level=2, country="SWZ") | |
# Identify which district each pixel is in | |
which_district <- sp::over(SpatialPoints(prediction_data, proj4string = crs(swz_districts)), swz_districts) | |
# Calculate the district mean per draw from the posterior | |
district_posterior <- apply(fits_prob, 2, function(x){tapply(x, which_district$GID_2, mean)}) | |
# Look at the posterior for the first district | |
hist(district_posterior[1,]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment