Last active
July 14, 2020 21:57
-
-
Save JacopoMangiavacchi/0fa77d197873d0ee77f8932be1a8dffe to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
private func execTrainingLoop(log: (String) -> Void) { | |
let trainingSample = trainingDataX!.count / imageSize | |
let trainingBatches = trainingSample / batchSize | |
for epoch in 0..<epochs { | |
var epochMatch = 0 | |
for batch in 0..<trainingBatches { | |
let xData = trainingDataX!.withUnsafeBufferPointer { pointer in | |
MLCTensorData(immutableBytesNoCopy: pointer.baseAddress!.advanced(by: batch * imageSize * batchSize), | |
length: batchSize * imageSize * MemoryLayout<Float>.size) | |
} | |
let yData = trainingDataY!.withUnsafeBufferPointer { pointer in | |
MLCTensorData(immutableBytesNoCopy: pointer.baseAddress!.advanced(by: batch * numberOfClasses * batchSize), | |
length: batchSize * numberOfClasses * MemoryLayout<Int>.size) | |
} | |
trainingGraph.execute(inputsData: ["image" : xData], | |
lossLabelsData: ["label" : yData], | |
lossLabelWeightsData: nil, | |
batchSize: batchSize, | |
options: [.synchronous]) { [self] (r, e, time) in | |
// VALIDATE | |
let bufferOutput = UnsafeMutableRawPointer.allocate(byteCount: batchSize * self.numberOfClasses * MemoryLayout<Float>.size, alignment: MemoryLayout<Float>.alignment) | |
outputSoftmax!.copyDataFromDeviceMemory(toBytes: bufferOutput, length: batchSize * self.numberOfClasses * MemoryLayout<Float>.size, synchronizeWithDevice: false) | |
let float4Ptr = bufferOutput.bindMemory(to: Float.self, capacity: batchSize * self.numberOfClasses) | |
let float4Buffer = UnsafeBufferPointer(start: float4Ptr, count: batchSize * self.numberOfClasses) | |
let batchOutputArray = Array(float4Buffer) | |
for i in 0..<batchSize { | |
let batchStartingPoint = i * self.numberOfClasses | |
let predictionStartingPoint = (i * self.numberOfClasses) + (batch * batchSize * numberOfClasses) | |
let sampleOutputArray = Array(batchOutputArray[batchStartingPoint..<(batchStartingPoint + self.numberOfClasses)]) | |
let predictionArray = Array(trainingDataY![predictionStartingPoint..<(predictionStartingPoint + numberOfClasses)]) | |
let prediction = argmaxDecoding(sampleOutputArray) | |
let label = oneHotDecoding(predictionArray) | |
if prediction == label { | |
epochMatch += 1 | |
} | |
} | |
} | |
} | |
let epochAccuracy = Float(epochMatch) / Float(trainingSample) | |
log("Epoch \(epoch) Accuracy = \(epochAccuracy) %") | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment