Created
January 6, 2025 19:23
-
-
Save JosiahParry/16717ccd202f844b32aefab2266e32f1 to your computer and use it in GitHub Desktop.
Drafting automatic spatial reg sfdep/spdep
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(sfdep) | |
library(dplyr) | |
library(spdep) | |
guerry_nb |> | |
reframe(across(where(is.numeric), \(.x) broom::tidy(global_moran_perm(.x, nb, wt)))) |> | |
tidyr::pivot_longer(everything()) |> | |
tidyr::unnest(value) | |
moran_all <- function(.data, vars, nb_col = "nb", wt_col = "wt") { | |
.data |> | |
reframe( | |
across(all_of(vars), | |
\(.x) broom::tidy(global_moran_perm(.x, .data[[nb_col]], .data[[wt_col]]))) | |
) |> | |
tidyr::pivot_longer(everything()) |> | |
tidyr::unnest(value) | |
} | |
# broom tidy wrapper | |
gm <- function(x, nb, wt) { | |
broom::tidy(global_moran_perm(x, nb, wt)) | |
} | |
guerry_nb |> | |
reframe( | |
across( | |
where(is.numeric), gm, wt = wt, nb = nb) | |
) |> | |
tidyr::pivot_longer(everything()) |> | |
tidyr::unnest(value) | |
#' Calculates the morans i for each numeric varaible in a dataset | |
auto_moran <- function(.data, nb_col = "nb", wt_col = "wt", ...) { | |
.data |> | |
reframe( | |
across(where(is.numeric), | |
\(.x) broom::tidy(global_moran_perm(.x, .data[[nb_col]], .data[[wt_col]], ...))) | |
) |> | |
tidyr::pivot_longer(everything(), names_to = "variable") |> | |
tidyr::unnest(value) |> | |
dplyr::select(-c("method")) |> | |
dplyr::rename(n_obs = parameter, p_value = p.value) | |
} | |
# function to report which model is most appropriate | |
# need to implement branching logic from anselin & rey 2014 | |
which_sar_model <- function(mod, nb, wt) { | |
rlang::check_installed("broom") | |
lm_tests <- spdep::lm.RStests(mod, recreate_listw(nb, wt), test = "all") | |
all_lm_tests <- dplyr::bind_rows(lapply(lm_tests, broom::tidy), .id = "test") | |
# logic to print which test to perform | |
all_ps <- setNames(all_lm_tests$p.value, all_lm_tests$test) | |
# insert the logic for returning which model | |
chosen_model <- names(all_ps[2]) | |
cli::cli_alert_info("Most appropriate model is {chosen_model}") | |
attr(all_lm_tests, "chosen_model") <- chosen_model | |
all_lm_tests | |
} | |
mod <- lm(crime_prop ~ literacy, data = guerry) | |
tmp <- which_sar_model(mod, guerry_nb$nb, guerry_nb$wt) | |
attr(tmp, "chosen_model") | |
auto_moran(guerry_nb, alternative = "greater") | |
guerry_nb |> | |
moran_all(vars = c("literacy", "infants")) | |
moran_all() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment