Created
November 26, 2016 22:14
-
-
Save KBlansit/278a979237cc129922b3f511017d1580 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# import libraries | |
require(data.table) | |
require(dplyr) | |
# define system variables | |
PROCEDURE <- '^proc_p$|^oproc[0-9]{1,2}' | |
DIAGNOSIS <- '^diag_p$|^odiag[0-9]{1,2}' | |
ROBOTIC_PROCEDURE <- '^174[^1]{1}' | |
MIN_VOL <- 25 | |
# diagnosis strings | |
CCY_DIAGNOSIS <- '^5770|^574[0-9]{0,1}' | |
APPY_DIAGNOSIS <- '^54[1-2]{1}|^540[0,1,9]{1}' | |
GBP_DIAGNOSIS <- '^2780[0,1]{0,1}|^278[8,1]{1}' | |
HERNIA_DIAGNOSIS <- '^5522[0,1,9]{0,1}|^5512[0,1,9]{0,1}|^5532[0,1,9]{0,1}' | |
COLEC_DIAGNOSIS <- '^153[0-9]{0,1}' | |
PROST_DIAGNOSIS <- '^185|^2334' | |
HYSTR_DIAGNOSIS <- '^6170|^5680|^6146|^22[0,1]{1}|620[1,2]{1}|^621|^614[1,2,3,4,8]{0,1}|^625[8,9]{1}|^179|180[0,1,8,9]{0,1}' | |
MYOM_DIAGNOSIS <- '^218[0,1,2,9]{0,1}|^6541' | |
# procedure strings | |
CCY_PROCEDURE <- '^512[1,2,3,4]{0,1}' | |
APPY_PROCEDURE <- '^470[1,9]{0,1}|^54[5,2]{1}1' | |
GBP_PROCEDURE <- '^443[1,9,8]{1}|^445|449[5,6,7,8,9]{1}|446[8,9]{1}' | |
HERNIA_PROCEDURE <- '^535[1,9]{1}|536[1,2,9]{0,1}' | |
COLEC_PROCEDURE <- '^457[1,2,3,4,5,6,9]|^458|^485|^173[1,9]{0,1}' | |
PROST_PROCEDURE <- '^602[1,9]{0,1}|^609[6,7,9]{1}|^60[3,4,5]{1}|^606[1,2,9]{1}' | |
HYSTR_PROCEDURE <- '^68[0-9]{0,2}' | |
MYOM_PROCEDURE <- '^68[0-9]{0,2}|^6919' | |
# names for procedures | |
CCY_NAME = 'CCY' | |
APPY_NAME = 'APPY' | |
GBP_NAME = 'GPB' | |
HERNIA_NAME = 'HERNIA' | |
COLEC_NAME = 'COLEC' | |
PROST_NAME = 'PROST' | |
HYSTR_NAME = 'HYST' | |
MYOM_NAME = 'MYOM' | |
regex_table <- rbind( | |
c(CCY_NAME, CCY_PROCEDURE, CCY_DIAGNOSIS), | |
c(APPY_NAME, APPY_PROCEDURE, APPY_DIAGNOSIS), | |
c(GBP_NAME, GBP_PROCEDURE, GBP_DIAGNOSIS), | |
c(HERNIA_NAME, HERNIA_PROCEDURE, HERNIA_DIAGNOSIS), | |
c(COLEC_NAME, COLEC_PROCEDURE, COLEC_DIAGNOSIS), | |
c(PROST_NAME, PROST_PROCEDURE, PROST_DIAGNOSIS), | |
c(HYSTR_NAME, HYSTR_PROCEDURE, HYSTR_DIAGNOSIS), | |
c(MYOM_NAME, MYOM_PROCEDURE, MYOM_DIAGNOSIS) | |
) | |
colnames(regex_table) <- c('Name', 'Procedure', 'Diagnosis') | |
regex_table <- as.data.frame(regex_table) | |
regex_table$Name <- as.character(regex_table$Name) | |
regex_table$Procedure <- as.character(regex_table$Procedure) | |
regex_table$Diagnosis <- as.character(regex_table$Diagnosis) | |
# read in data | |
oshpd_08 <- read.csv('OSHPD_08.csv', header = T) | |
oshpd_09 <- read.csv('OSHPD_09.csv', header = T) | |
oshpd_10 <- read.csv('OSHPD_10.csv', header = T) | |
oshpd_11 <- read.csv('OSHPD_11.csv', header = T) | |
oshpd_12 <- read.csv('OSHPD_12.csv', header = T) | |
oshpd_13 <- read.csv('OSHPD_13.csv', header = T) | |
processOshpd <- function(year, dt, regex_table, DIAGNOSIS, PROCEDURE, robot_query) { | |
processRegexRow <- function(regex_row, mtx_diag, mtx_proc, robot_query) { | |
queryData <- function(mtx, regexQuery) { | |
# mtx: matrix to query | |
# regexQuery: regex to query | |
loc <- grepl(regexQuery, mtx) | |
dim(loc) <- dim(mtx) | |
sums <- as.logical(rowSums(loc) > 0) | |
} | |
if(dim(mtx_diag)[1] != dim(mtx_proc)[1]) { | |
stop('mtx_diag and mtx_proc require similiar rows') | |
} | |
rslt <- rep(NA, dim(mtx_diag)[1]) | |
proc_rows <- queryData(mtx_diag, regex_row['Diagnosis']) * queryData(mtx_proc, regex_row['Procedure']) | |
rob_rows <- queryData(mtx_diag, regex_row['Diagnosis']) * queryData(mtx_proc, robot_query) | |
proc_rows <- as.logical(proc_rows) | |
rob_rows <- as.logical(rob_rows) | |
rslt[proc_rows] <- 'non-robotic' | |
rslt[rob_rows] <- 'robotic' | |
rtn_dt = as.data.frame(rslt) | |
colnames(rtn_dt) <- as.character(regex_row['Name']) | |
return(rtn_dt) | |
} | |
mtx_diag <- as.matrix(dt[, grepl(DIAGNOSIS, names(dt)), with = FALSE]) | |
mtx_proc <- as.matrix(dt[, grepl(PROCEDURE, names(dt)), with = FALSE]) | |
lsted_dts <- apply(regex_table, 1, FUN = processRegexRow, | |
mtx_diag = mtx_diag, mtx_proc = mtx_proc, robot_query = ROBOTIC_PROCEDURE) | |
procs <- do.call(cbind, lsted_dts) | |
vld_rows <- rowSums(is.na(procs)) < nrow(regex_table) | |
multi_rows <- rowSums(is.na(procs)) < nrow(regex_table) - 1 | |
# hard code vars | |
poor_insur <- c(2, 5, 7) | |
other_cols <- c('los', 'charge', 'adm_src', 'pay_cat', 'oshpd_id') | |
# deal with single diagnosis | |
singular_dt <- cbind(procs[vld_rows, ], dt[vld_rows, other_cols, with = FALSE]) | |
singular_dt$year <- year | |
return(singular_dt) | |
} | |
# process OSHPD data | |
df_08 <- processOshpd('08', data.table(oshpd_08), regex_table, DIAGNOSIS, PROCEDURE, robot_query) | |
df_09 <- processOshpd('09', data.table(oshpd_09), regex_table, DIAGNOSIS, PROCEDURE, robot_query) | |
df_10 <- processOshpd('10', data.table(oshpd_10), regex_table, DIAGNOSIS, PROCEDURE, robot_query) | |
df_11 <- processOshpd('11', data.table(oshpd_11), regex_table, DIAGNOSIS, PROCEDURE, robot_query) | |
df_12 <- processOshpd('12', data.table(oshpd_12), regex_table, DIAGNOSIS, PROCEDURE, robot_query) | |
df_13 <- processOshpd('13', data.table(oshpd_13), regex_table, DIAGNOSIS, PROCEDURE, robot_query) | |
# bind data | |
df <- rbind(df_08, df_09, df_10, df_11, df_12, df_13) | |
# aggegrate | |
aggegrateHosps <- function(regex_table, df) { | |
aggegrateTotal <- function(df, regex_table) { | |
robRows <- rowSums(df[regex_table$Name] == 'robotic', na.rm = TRUE) > 0 | |
df$TOTAL <- 'non-robotic' | |
df$TOTAL[robRows] <- 'robotic' | |
temp_df <- count(df, TOTAL, oshpd_id, year) | |
temp_df<- temp_df[!is.na(temp_df[1]),] | |
wide_df <- dcast(temp_df, oshpd_id + year ~ TOTAL, value.var = 'n') | |
wide_df$robotic[is.na(wide_df$robotic)] <- 0 # this is okay | |
colnames(wide_df)[grepl('robotic$', names(wide_df))] <- | |
paste("TOTAL", names(wide_df)[grepl('robotic$', names(wide_df))], sep = '_') | |
wide_df$TOTAL_VOL <- wide_df$`TOTAL_non-robotic` + wide_df$TOTAL_robotic | |
wide_df$TOTAL_PROP <- wide_df$TOTAL_robotic / wide_df$TOTAL_VOL | |
rtn_cols <- c("oshpd_id", "year", "TOTAL_VOL", "TOTAL_robotic", "TOTAL_PROP") | |
return(wide_df[rtn_cols]) | |
} | |
aggegrateType <- function(type, df) { | |
temp_df <- eval(parse(text = paste('count(df,', type, ', oshpd_id, year)'))) | |
colnames(temp_df)[1] <- type | |
# remove NAs | |
temp_df<- temp_df[!is.na(temp_df[1]),] | |
typeFormula <- as.formula(paste('oshpd_id + year ~ ', type, sep = '')) | |
wide_df <- dcast(temp_df, typeFormula, value.var = 'n') | |
wide_df$robotic[is.na(wide_df$robotic)] <- 0 # this is okay | |
colnames(wide_df)[grepl('robotic$', names(wide_df))] <- | |
paste(type, names(wide_df)[grepl('robotic$', names(wide_df))], sep = '_') | |
typeTotal <- cbind(wide_df[paste(type, "_non-robotic", sep = "")] + | |
wide_df[paste(type, "_robotic", sep = "")]) | |
typeProp <- cbind(wide_df[paste(type, "_robotic", sep = "")] / typeTotal) | |
newCols <- as.data.frame(cbind(typeTotal, typeProp)) | |
colnames(newCols) <- paste(type, c("_VOL", "_PROP"), sep = "") | |
wide_df <- cbind(wide_df, newCols) | |
rtn_cols <- c("oshpd_id", "year", paste(type, c("_VOL", "_robotic", "_PROP"), sep = "")) | |
return(wide_df[rtn_cols]) | |
} | |
mainDf <- aggegrateTotal(df, regex_table) | |
dfLst <- lapply(regex_table$Name, aggegrateType, df = df) | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment