Created
November 23, 2019 17:58
-
-
Save Krucamper/651139eaa5f5d67e062168d52113c694 to your computer and use it in GitHub Desktop.
CNN กับ Marvel Cinematic Universe (model)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
def inference(images, batch_size, n_classes): | |
with tf.compat.v1.variable_scope('conv1') as scope: | |
weights = tf.Variable(tf.random.truncated_normal(shape=[3, 3, 3, 64], stddev=1.0, dtype=tf.float32), | |
name='weights', dtype=tf.float32) | |
biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[64]), | |
name='biases', dtype=tf.float32) | |
conv = tf.nn.conv2d(images, weights, strides=[1, 1, 1, 1], padding='SAME') | |
pre_activation = tf.nn.bias_add(conv, biases) | |
conv1 = tf.nn.relu(pre_activation, name=scope.name) | |
with tf.compat.v1.variable_scope('pofoling1_lrn') as scope: | |
pool1 = tf.nn.max_pool2d(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name='pooling1') | |
norm1 = tf.nn.lrn(pool1, depth_radius=4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm1') | |
with tf.compat.v1.variable_scope('conv2') as scope: | |
weights = tf.Variable(tf.random.truncated_normal(shape=[3, 3, 64, 16], stddev=0.1, dtype=tf.float32), | |
name='weights', dtype=tf.float32) | |
biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[16]), | |
name='biases', dtype=tf.float32) | |
conv = tf.nn.conv2d(norm1, weights, strides=[1, 1, 1, 1], padding='SAME') | |
pre_activation = tf.nn.bias_add(conv, biases) | |
conv2 = tf.nn.relu(pre_activation, name='conv2') | |
with tf.compat.v1.variable_scope('pooling2_lrn') as scope: | |
norm2 = tf.nn.lrn(conv2, depth_radius=4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm2') | |
pool2 = tf.nn.max_pool2d(norm2, ksize=[1, 3, 3, 1], strides=[1, 1, 1, 1], padding='SAME', name='pooling2') | |
with tf.compat.v1.variable_scope('local3') as scope: | |
reshape = tf.reshape(pool2, shape=[batch_size, -1]) | |
dim = reshape.get_shape()[1].value | |
weights = tf.Variable(tf.random.truncated_normal(shape=[dim, 64], stddev=0.005, dtype=tf.float32),name='weights', dtype=tf.float32) | |
biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[64]), | |
name='biases', dtype=tf.float32) | |
local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name) | |
with tf.compat.v1.variable_scope('local4') as scope: | |
weights = tf.Variable(tf.random.truncated_normal(shape=[64, 64], stddev=0.005, dtype=tf.float32), | |
name='weights', dtype=tf.float32) | |
biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[64]), name='biases', dtype=tf.float32) | |
local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name='local4') | |
with tf.compat.v1.variable_scope('softmax_linear') as scope: | |
weights = tf.Variable(tf.random.truncated_normal(shape=[64, n_classes], stddev=0.005, dtype=tf.float32), | |
name='softmax_linear', dtype=tf.float32) | |
biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[n_classes]), | |
name='biases', dtype=tf.float32) | |
softmax_linear = tf.add(tf.matmul(local4, weights), biases, name='softmax_linear') | |
return softmax_linear | |
def losses(logits, labels): | |
with tf.compat.v1.variable_scope('loss') as scope: | |
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels, | |
name='xentropy_per_example') | |
loss = tf.reduce_mean(cross_entropy, name='loss') | |
tf.summary.scalar(scope.name + '/loss', loss) | |
return loss | |
def trainning(loss, learning_rate): | |
with tf.name_scope('optimizer'): | |
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) | |
global_step = tf.Variable(0, name='global_step', trainable=False) | |
train_op = optimizer.minimize(loss, global_step=global_step) | |
return train_op | |
def evaluation(logits, labels): | |
with tf.compat.v1.variable_scope('accuracy') as scope: | |
correct = tf.nn.in_top_k(logits, labels, 1) | |
correct = tf.cast(correct, tf.float16) | |
accuracy = tf.reduce_mean(correct) | |
tf.summary.scalar(scope.name + '/accuracy', accuracy) | |
return accuracy |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment