Last active
February 10, 2026 19:27
-
-
Save LeeeeT/dce09c6bff2f079c15605017d770dc5f to your computer and use it in GitHub Desktop.
k-SIC + unordered δ + refcount
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import itertools | |
| from dataclasses import dataclass | |
| type Name = int | |
| name = itertools.count() | |
| type Label = int | |
| label = itertools.count() | |
| type Pos = Var | Lam | Sup | Usp | Rep | |
| type Neg = Sub | App | Dup | Udp | Acc | |
| @dataclass(frozen=True) | |
| class Var: | |
| nam: Name | |
| @dataclass(frozen=True) | |
| class Sub: | |
| nam: Name | |
| @dataclass(frozen=True) | |
| class Lam: | |
| bnd: Name | |
| bod: Name | |
| @dataclass(frozen=True) | |
| class App: | |
| arg: Name | |
| ret: Name | |
| @dataclass(frozen=True) | |
| class Dup: | |
| dpl: Label | |
| dp0: Name | |
| dp1: Name | |
| @dataclass(frozen=True) | |
| class Sup: | |
| spl: Label | |
| sp0: Name | |
| sp1: Name | |
| @dataclass(frozen=True) | |
| class Udp: | |
| udl: Label | |
| ud0: Name | |
| ud1: Name | |
| @dataclass(frozen=True) | |
| class Usp: | |
| usl: Label | |
| us0: Name | |
| us1: Name | |
| @dataclass(frozen=True) | |
| class Rep: | |
| rpl: Label | |
| rpb: Name | |
| @dataclass(frozen=True) | |
| class Acc: | |
| acl: Label | |
| acb: Name | |
| type Rdx = tuple[Name, Name] | |
| @dataclass(frozen=True) | |
| class Net: | |
| book: set[Rdx] | |
| vars: dict[Name, Pos] | |
| subs: dict[Name, Neg] | |
| def empty_net() -> Net: | |
| return Net(set(), {}, {}) | |
| def var(net: Net, nam: Name) -> Name: | |
| var = next(name) | |
| net.vars[var] = Var(nam) | |
| return var | |
| def sub(net: Net, nam: Name) -> Name: | |
| sub = next(name) | |
| net.subs[sub] = Sub(nam) | |
| return sub | |
| def lam(net: Net, bnd: Name, bod: Name) -> Name: | |
| lam = next(name) | |
| net.vars[lam] = Lam(bnd, bod) | |
| return lam | |
| def app(net: Net, arg: Name, ret: Name) -> Name: | |
| app = next(name) | |
| net.subs[app] = App(arg, ret) | |
| return app | |
| def dup(net: Net, dpl: Label, dp0: Name, dp1: Name) -> Name: | |
| dup = next(name) | |
| net.subs[dup] = Dup(dpl, dp0, dp1) | |
| return dup | |
| def sup(net: Net, spl: Label, sp0: Name, sp1: Name) -> Name: | |
| sup = next(name) | |
| net.vars[sup] = Sup(spl, sp0, sp1) | |
| return sup | |
| def udp(net: Net, udl: Label, ud0: Name, ud1: Name) -> Name: | |
| udp = next(name) | |
| net.subs[udp] = Udp(udl, ud0, ud1) | |
| return udp | |
| def usp(net: Net, usl: Label, us0: Name, us1: Name) -> Name: | |
| usp = next(name) | |
| net.vars[usp] = Usp(usl, us0, us1) | |
| return usp | |
| def rep(net: Net, rpl: Label, rpb: Name) -> Name: | |
| rep = next(name) | |
| net.vars[rep] = Rep(rpl, rpb) | |
| return rep | |
| def acc(net: Net, acl: Label, acb: Name) -> Name: | |
| acc = next(name) | |
| net.subs[acc] = Acc(acl, acb) | |
| return acc | |
| def wire(net: Net) -> tuple[Name, Name]: | |
| nam = next(name) | |
| return var(net, nam), sub(net, nam) | |
| def show_pos(net: Net, pos: Name) -> str: | |
| match net.vars.get(pos): | |
| case None: | |
| return "+_" | |
| case Var(nam) if nam in net.vars: | |
| return show_pos(net, nam) | |
| case Var(nam): | |
| return f"+{nam}" | |
| case Lam(bnd, bod): | |
| return f"+({show_neg(net, bnd)} {show_pos(net, bod)})" | |
| case Sup(spl, sp0, sp1): | |
| return f"+&{spl}{{{show_pos(net, sp0)} {show_pos(net, sp1)}}}" | |
| case Usp(usl, us0, us1): | |
| return f"+%{usl}[{show_pos(net, us0)} {show_pos(net, us1)}]" | |
| case Rep(rpl, rpb): | |
| return f"+%{rpl}{{{show_pos(net, rpb)}}}" | |
| def show_neg(net: Net, neg: Name) -> str: | |
| match net.subs.get(neg): | |
| case None: | |
| return "-_" | |
| case Sub(nam) if nam in net.subs: | |
| return show_neg(net, nam) | |
| case Sub(nam): | |
| return f"-{nam}" | |
| case App(arg, ret): | |
| return f"-({show_pos(net, arg)} {show_neg(net, ret)})" | |
| case Dup(dpl, dp0, dp1): | |
| return f"-&{dpl}{{{show_neg(net, dp0)} {show_neg(net, dp1)}}}" | |
| case Udp(udl, ud0, ud1): | |
| return f"-%{udl}[{show_neg(net, ud0)} {show_neg(net, ud1)}]" | |
| case Acc(acl, acb): | |
| return f"-%{acl}{{{show_neg(net, acb)}}}" | |
| def reduce(net: Net) -> int: | |
| itrs = 0 | |
| while net.book: | |
| itrs += 1 | |
| lhs, rhs = net.book.pop() | |
| match net.subs.pop(lhs), net.vars.pop(rhs): | |
| case lhsc, Var(nam) if nam in net.vars: | |
| net.subs[lhs] = lhsc | |
| net.book.add((lhs, nam)) | |
| case lhsc, Var(nam): | |
| net.subs[nam] = lhsc | |
| case Sub(nam), rhsc if nam in net.subs: | |
| net.vars[rhs] = rhsc | |
| net.book.add((nam, rhs)) | |
| case Sub(nam), rhsc: | |
| net.vars[nam] = rhsc | |
| case App(arg, ret), Lam(bnd, bod): | |
| net.book.add((bnd, arg)) | |
| net.book.add((ret, bod)) | |
| case App(arg, ret), Sup(spl, sp0, sp1): | |
| ap, an = wire(net) | |
| bp, bn = wire(net) | |
| cp, cn = wire(net) | |
| dp, dn = wire(net) | |
| net.book.add((dup(net, spl, an, bn), arg)) | |
| net.book.add((ret, sup(net, spl, cp, dp))) | |
| net.book.add((app(net, ap, cn), sp0)) | |
| net.book.add((app(net, bp, dn), sp1)) | |
| case App(arg, ret), Usp(usl, us0, us1): | |
| ap, an = wire(net) | |
| bp, bn = wire(net) | |
| cp, cn = wire(net) | |
| dp, dn = wire(net) | |
| net.book.add((dup(net, usl, an, bn), arg)) | |
| net.book.add((ret, sup(net, usl, cp, dp))) | |
| net.book.add((app(net, ap, cn), us0)) | |
| net.book.add((app(net, bp, dn), us1)) | |
| case App(arg, ret), Rep(rpl, rpb): | |
| x = next(name) | |
| net.vars[x] = net.vars.pop(rpb) | |
| ap, an = wire(net) | |
| net.book.add((udp(net, rpl, app(net, arg, ret), an), x)) | |
| net.vars[rpb] = net.vars.pop(ap) | |
| case Dup(dpl, dp0, dp1), Lam(bnd, bod): | |
| ap, an = wire(net) | |
| bp, bn = wire(net) | |
| cp, cn = wire(net) | |
| dp, dn = wire(net) | |
| net.book.add((dp0, lam(net, an, bp))) | |
| net.book.add((dp1, lam(net, cn, dp))) | |
| net.book.add((bnd, sup(net, dpl, ap, cp))) | |
| net.book.add((dup(net, dpl, bn, dn), bod)) | |
| case Dup(dpl, dp0, dp1), Sup(spl, sp0, sp1) if dpl == spl: | |
| net.book.add((dp0, sp0)) | |
| net.book.add((dp1, sp1)) | |
| case Dup(dpl, dp0, dp1), Sup(spl, sp0, sp1): | |
| ap, an = wire(net) | |
| bp, bn = wire(net) | |
| cp, cn = wire(net) | |
| dp, dn = wire(net) | |
| net.book.add((dp0, sup(net, spl, ap, bp))) | |
| net.book.add((dp1, sup(net, spl, cp, dp))) | |
| net.book.add((dup(net, dpl, an, cn), sp0)) | |
| net.book.add((dup(net, dpl, bn, dn), sp1)) | |
| case Dup(dpl, dp0, dp1), Usp(usl, us0, us1) if dpl == usl: | |
| net.book.add((dp0, us0)) | |
| net.book.add((dp1, us1)) | |
| case Dup(dpl, dp0, dp1), Usp(usl, us0, us1): | |
| net.book.add((dup(net, dpl, acc(net, usl, dp0), acc(net, usl, dp1)), us0)) | |
| net.book.add((dup(net, dpl, acc(net, usl, dp0), acc(net, usl, dp1)), us1)) | |
| case Dup(dpl, dp0, dp1), Rep(rpl, rpb) if dpl == rpl: | |
| net.book.add((dp0, rep(net, rpl, rpb))) | |
| net.book.add((dp1, rep(net, rpl, rpb))) | |
| case Dup(dpl, dp0, dp1), Rep(rpl, rpb): | |
| x = next(name) | |
| net.vars[x] = net.vars.pop(rpb) | |
| ap, an = wire(net) | |
| net.book.add((udp(net, rpl, dup(net, dpl, dp0, dp1), an), x)) | |
| net.vars[rpb] = net.vars.pop(ap) | |
| case Udp(udl, ud0, ud1), Lam(bnd, bod): | |
| ap, an = wire(net) | |
| bp, bn = wire(net) | |
| cp, cn = wire(net) | |
| dp, dn = wire(net) | |
| net.book.add((bnd, sup(net, udl, ap, bp))) | |
| net.book.add((dup(net, udl, cn, dn), bod)) | |
| net.book.add((ud0, lam(net, an, cp))) | |
| net.book.add((ud1, lam(net, bn, dp))) | |
| case Udp(udl, ud0, ud1), Sup(spl, sp0, sp1) if udl == spl: | |
| net.book.add((ud0, sp0)) | |
| net.book.add((ud1, sp1)) | |
| case Udp(udl, ud0, ud1), Sup(spl, sp0, sp1): | |
| net.book.add((ud0, sup(net, spl, rep(net, udl, sp0), rep(net, udl, sp1)))) | |
| net.book.add((ud1, sup(net, spl, rep(net, udl, sp0), rep(net, udl, sp1)))) | |
| case Udp(udl, ud0, ud1), Usp(usl, us0, us1) if udl == usl: | |
| net.book.add((ud0, us0)) | |
| net.book.add((ud1, us1)) | |
| case Udp(udl, ud0, ud1), Usp(usl, us0, us1): | |
| ap, an = wire(net) | |
| bp, bn = wire(net) | |
| cp, cn = wire(net) | |
| dp, dn = wire(net) | |
| net.book.add((ud0, usp(net, usl, ap, bp))) | |
| net.book.add((ud1, usp(net, usl, cp, dp))) | |
| net.book.add((udp(net, udl, an, cn), us0)) | |
| net.book.add((udp(net, udl, bn, dn), us1)) | |
| case Udp(udl, ud0, ud1), Rep(rpl, rpb) if udl == rpl: | |
| net.book.add((ud0, rep(net, rpl, rpb))) | |
| net.book.add((ud1, rep(net, rpl, rpb))) | |
| case Udp(udl, ud0, ud1), Rep(rpl, rpb): | |
| x = next(name) | |
| net.vars[x] = net.vars.pop(rpb) | |
| ap, an = wire(net) | |
| net.book.add((udp(net, rpl, udp(net, udl, ud0, ud1), an), x)) | |
| net.vars[rpb] = net.vars.pop(ap) | |
| case Acc(acl, acb), Lam(bnd, bod): | |
| x = next(name) | |
| net.subs[x] = net.subs.pop(acb) | |
| ap, an = wire(net) | |
| net.book.add((x, usp(net, acl, lam(net, bnd, bod), ap))) | |
| net.subs[acb] = net.subs.pop(an) | |
| case Acc(acl, acb), Sup(spl, sp0, sp1) if acl == spl: | |
| net.book.add((acc(net, acl, acb), sp0)) | |
| net.book.add((acc(net, acl, acb), sp1)) | |
| case Acc(acl, acb), Sup(spl, sp0, sp1): | |
| x = next(name) | |
| net.subs[x] = net.subs.pop(acb) | |
| ap, an = wire(net) | |
| net.book.add((x, usp(net, acl, sup(net, spl, sp0, sp1), ap))) | |
| net.subs[acb] = net.subs.pop(an) | |
| case Acc(acl, acb), Usp(usl, us0, us1) if acl == usl: | |
| net.book.add((acc(net, acl, acb), us0)) | |
| net.book.add((acc(net, acl, acb), us1)) | |
| case Acc(acl, acb), Usp(usl, us0, us1): | |
| x = next(name) | |
| net.subs[x] = net.subs.pop(acb) | |
| ap, an = wire(net) | |
| net.book.add((x, usp(net, acl, usp(net, usl, us0, us1), ap))) | |
| net.subs[acb] = net.subs.pop(an) | |
| # case Acc(acl, acb), Rep(rpl, rpb) if acl == rpl: | |
| # ... | |
| case Acc(acl, acb), Rep(rpl, rpb): | |
| x = next(name) | |
| net.subs[x] = net.subs.pop(acb) | |
| ap, an = wire(net) | |
| net.book.add((x, usp(net, acl, rep(net, rpl, rpb), ap))) | |
| net.subs[acb] = net.subs.pop(an) | |
| return itrs | |
| def print_state(net: Net, root: Name, *, heap: bool = False) -> None: | |
| print("ROOT:") | |
| print(f" {show_pos(net, root)}") | |
| print() | |
| print("BOOK:") | |
| for lhs, rhs in net.book: | |
| print(f" {show_neg(net, lhs)} ⋈ {show_pos(net, rhs)}") | |
| if heap: | |
| print() | |
| print("VARS:") | |
| for nam in net.vars: | |
| print(f" {nam} = {show_pos(net, nam)}") | |
| print() | |
| print("SUBS:") | |
| for nam in net.subs: | |
| print(f" {nam} = {show_neg(net, nam)}") | |
| def print_reduction(net: Net, root: Name, *, heap: bool = False) -> None: | |
| print("=" * 30) | |
| print("=", "INITIAL".center(26), "=") | |
| print("=" * 30) | |
| print() | |
| print_state(net, root, heap=heap) | |
| print() | |
| print("=" * 30) | |
| print("=", "NORMALIZED".center(26), "=") | |
| print("=" * 30) | |
| print() | |
| itrs = reduce(net) | |
| print_state(net, root, heap=heap) | |
| print() | |
| print(f"ITRS: {itrs}") | |
| def mk_app(net: Net, fun: Name, arg: Name) -> Name: | |
| rp, rn = wire(net) | |
| net.book.add((app(net, arg, rn), fun)) | |
| return rp | |
| def mk_dup(net: Net, x: Name, lab: Label | None = None) -> tuple[Name, Name]: | |
| if lab is None: | |
| lab = next(label) | |
| x0p, x0n = wire(net) | |
| x1p, x1n = wire(net) | |
| net.book.add((dup(net, lab, x0n, x1n), x)) | |
| return x0p, x1p | |
| def mk_rep(net: Net, x: Name, n: int, lab: Label | None = None) -> list[Name]: | |
| if lab is None: | |
| lab = next(label) | |
| return [rep(net, lab, x) for _ in range(n)] | |
| def mk_c2(net: Net) -> Name: | |
| fp, fn = wire(net) | |
| xp, xn = wire(net) | |
| f0, f1 = mk_dup(net, fp) | |
| fx = mk_app(net, f0, xp) | |
| ffx = mk_app(net, f1, fx) | |
| return lam(net, fn, lam(net, xn, ffx)) | |
| def mk_cpow2(net: Net, k: int) -> Name: | |
| # k=1 -> c2, k=2 -> c4, k=3 -> c8, ... | |
| # c_{2^k} = λf. c2 (c_{2^(k-1)} f) | |
| if k < 1: | |
| raise ValueError("k must be >= 1") | |
| if k == 1: | |
| return mk_c2(net) | |
| fp, fn = wire(net) | |
| prev = mk_cpow2(net, k - 1) # c_{2^(k-1)} | |
| prev_f = mk_app(net, prev, fp) # f^(2^(k-1)) | |
| body = mk_app(net, mk_c2(net), prev_f) # square -> f^(2^k) | |
| return lam(net, fn, body) | |
| # λt.λf.t | |
| def mk_true(net: Net) -> Name: | |
| tp, tn = wire(net) | |
| fp, fn = wire(net) | |
| return lam(net, tn, lam(net, fn, tp)) | |
| # λt.λf.f | |
| def mk_false(net: Net) -> Name: | |
| tp, tn = wire(net) | |
| fp, fn = wire(net) | |
| return lam(net, tn, lam(net, fn, fp)) | |
| # λb.λt.λf.(b f f) | |
| def mk_clr(net: Net) -> Name: | |
| bp, bn = wire(net) | |
| tp, tn = wire(net) | |
| fp, fn = wire(net) | |
| f0, f1 = mk_rep(net, fp, 2) | |
| return lam(net, bn, lam(net, tn, lam(net, fn, mk_app(net, mk_app(net, bp, f0), f1)))) | |
| # g = λy.y | |
| # f = λx.(x g g) | |
| # ((f λa.λb.a) (f λc.λd.d)) | |
| def test_jamespayor(net: Net) -> Name: | |
| yp, yn = wire(net) | |
| g0, g1 = mk_rep(net, lam(net, yn, yp), 2) | |
| xp, xn = wire(net) | |
| f0, f1 = mk_dup(net, lam(net, xn, mk_app(net, mk_app(net, xp, g0), g1))) | |
| ap, an = wire(net) | |
| bp, bn = wire(net) | |
| cp, cn = wire(net) | |
| dp, dn = wire(net) | |
| return mk_app(net, mk_app(net, f0, lam(net, an, lam(net, bn, ap))), mk_app(net, f1, lam(net, cn, lam(net, dn, dp)))) | |
| # (clr^N true) | |
| def test_clr_fusion(net: Net, N: int) -> Name: | |
| return mk_app(net, mk_app(net, mk_cpow2(net, N), mk_clr(net)), mk_true(net)) | |
| def main() -> None: | |
| net = empty_net() | |
| # root = test_jamespayor(net) | |
| root = test_clr_fusion(net, 100) | |
| print_reduction(net, root) | |
| main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment