Created
April 8, 2015 21:20
-
-
Save Loyale/2f971ce2659c2f5dbb4c to your computer and use it in GitHub Desktop.
GSEA 'standard' plots in R
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(ggplot2) | |
library(grid) | |
############# | |
#Utility Functions | |
############# | |
# multiplot <- function(..., plotlist=NULL, cols) { | |
# require(grid) | |
# | |
# # Make a list from the ... arguments and plotlist | |
# plots <- c(list(...), plotlist) | |
# | |
# numPlots = length(plots) | |
# | |
# # Make the panel | |
# plotCols = cols # Number of columns of plots | |
# plotRows = ceiling(numPlots/plotCols) # Number of rows needed, calculated from # of cols | |
# | |
# # Set up the page | |
# grid.newpage() | |
# pushViewport(viewport(layout = grid.layout(plotRows, plotCols))) | |
# vplayout <- function(x, y) | |
# viewport(layout.pos.row = x, layout.pos.col = y) | |
# | |
# # Make each plot, in the correct location | |
# for (i in 1:numPlots) { | |
# curRow = ceiling(i/plotCols) | |
# curCol = (i-1) %% plotCols + 1 | |
# print(plots[[i]], vp = vplayout(curRow, curCol )) | |
# } | |
# | |
# } | |
################ | |
#Main | |
################ | |
###General ggplot2 options | |
#theme_set(theme_bw()) | |
#theme_set(theme_gray()) | |
pmargin_top <- theme(plot.margin = unit(c(1, 1,-0.5, 0), "lines")) | |
pmargin_middle <-theme(plot.margin = unit(c(0, 1,-1, 2.5), "lines")) | |
pmargin_bottom <-theme(plot.margin = unit(c(0, 1,0, 0.5), "lines")) | |
major_grid <- theme(panel.grid = element_blank(),panel.background = element_blank()) | |
no_breaks_x <- scale_x_continuous(breaks=NULL) | |
no_breaks_y <- scale_y_continuous(breaks=NULL) | |
makeGSEAplot<-function(genesetData,filename=NULL,title=NULL,zeroCross=c(),...){ | |
RankedListMax<-max(abs(genesetData$RANK.METRIC.SCORE)) | |
p<-ggplot(genesetData) | |
p1<- p + geom_line(aes(x=RANK.IN.GENE.LIST,y=RUNNING.ES),col="red") + geom_hline(yintercept=0,lty='dashed') + no_breaks_x + major_grid + xlab(NULL) + ylab("Enrichment Score") + pmargin_top + scale_y_continuous(limits=c(-1,1)) | |
if(!is.null(title)){ | |
p1 <-p1 + ggtitle(title) | |
} | |
p2<- p + geom_linerange(aes(x=RANK.IN.GENE.LIST,ymin=0,ymax=1)) + no_breaks_x + no_breaks_y + major_grid + xlab(NULL) + ylab(NULL) + pmargin_middle | |
p3<- p + stat_density(aes(x=RANK.IN.GENE.LIST,y=1,fill=..density..),geom="tile",position="identity") + xlab(NULL) + ylab(NULL) + scale_fill_gradient(low="white",high="steelblue") + theme(legend.position = "none") + no_breaks_x + no_breaks_y + major_grid + pmargin_middle | |
p4<- p + geom_area(aes(x=RANK.IN.GENE.LIST,y=RANK.METRIC.SCORE),fill='grey') + ylab("Ranked List Metric") + xlab('Rank in Gene List')+ pmargin_bottom + major_grid + scale_y_continuous(limits=c(-RankedListMax,RankedListMax)) | |
for (zc in zeroCross){ | |
p1<-p1 + geom_vline(xintercept = zc,color="darkgrey",linetype="dashed") | |
p2<-p2 + geom_vline(xintercept = zc,color="darkgrey",linetype="dashed") | |
p3<-p3 + geom_vline(xintercept = zc,color="darkgrey",linetype="dashed") | |
p4<-p4 + geom_vline(xintercept = zc,color="darkgrey",linetype="dashed") | |
} | |
#multiplot(p1, p2, p3, cols=1) | |
if(!is.null(filename)){ | |
pdf(filename,...) | |
} | |
#OR | |
grid.newpage() | |
pushViewport(viewport(layout=grid.layout(4,1,heights = unit(c(4, 0.5,0.5, 3),"null")))) | |
print(p1, vp = viewport(layout.pos.row = 1, layout.pos.col = 1)) | |
print(p2, vp = viewport(layout.pos.row = 2, layout.pos.col = 1)) | |
print(p3, vp = viewport(layout.pos.row = 3, layout.pos.col = 1)) | |
print(p4, vp = viewport(layout.pos.row = 4, layout.pos.col = 1)) | |
if(!is.null(filename)){ | |
dev.off() | |
} | |
} | |
############# | |
#Load GSEA results | |
############# | |
Fezf2_vs_GFP_rank_CSMN<-read.table('CSMN gene enrichment/CSMN_enrichment_Test_decending_fpkm1.GseaPreranked.1395871935795/P3P6 <=-3.xls',header=T,sep="\t") | |
Fezf2_vs_GFP_rank_CPN<-read.table('CSMN gene enrichment/CSMN_enrichment_Test_decending_fpkm1.GseaPreranked.1395871935795/P3P6 >=3.xls',header=T,sep="\t") | |
makeGSEAplot(Fezf2_vs_GFP_rank_CSMN,filename="Fezf2_vs_GFP_rank_CSMN.pdf",title="Fezf2 vs GFP\nTest-stat rank\nP3P6 <=-3 (CSMN)",zeroCross=c(6152,6487)) | |
makeGSEAplot(Fezf2_vs_GFP_rank_CPN,filename="Fezf2_vs_GFP_rank_CPN.pdf",title="Fezf2 vs GFP\nTest-stat rank\nP3P6 >=3 (CPN)",zeroCross=c(6152,6487)) | |
#Fezf2 bound | |
#CSMN_enrichment_Test_descending_and_Fezf2_bound.GseaPreranked.1394740380970 | |
Fezf2_vs_GFP_rank_CSMN_bound<-read.table('CSMN gene enrichment/CSMN_enrichment_Test_decending_fpkm1_bound.GseaPreranked.1395871981577/P3P6LT.3.xls',header=T,sep="\t") | |
Fezf2_vs_GFP_rank_CPN_bound<-read.table('CSMN gene enrichment/CSMN_enrichment_Test_decending_fpkm1_bound.GseaPreranked.1395871981577/P3P6GT3.xls',header=T,sep="\t") | |
makeGSEAplot(Fezf2_vs_GFP_rank_CSMN_bound,filename="Fezf2_vs_GFP_rank_CSMN_bound.pdf",title="Fezf2 vs GFP Fezf2-bound\nTest-stat rank\nP3P6 <=-3 (CSMN)",zeroCross=c(6152,6487)) | |
makeGSEAplot(Fezf2_vs_GFP_rank_CPN_bound,filename="Fezf2_vs_GFP_rank_CPN_bound.pdf",title="Fezf2 vs GFP Fezf2-bound\nTest-stat rank\nP3P6 >=3 (CPN)",zeroCross=c(6152,6487)) | |
# makeGSEAplot(RAP1_rnk_vs_hRNPU_sig_dn,filename="RAP1_rnk_vs_hRNPU_sig_dn.pdf",title="RAP1_rnk_vs_hRNPU_sig_dn") | |
# makeGSEAplot(RAP1_rnk_vs_hRNPU_sig_up,filename="RAP1_rnk_vs_hRNPU_sig_up.pdf",title="RAP1_rnk_vs_hRNPU_sig_up") | |
#### | |
#Testing | |
#### | |
#makeGSEAplot(hRNPU_rnk_vs_RAP1_sig_dn,title="hRNPU_rnk_vs_RAP1_sig_dn") | |
####### | |
# Reporting | |
######## | |
write.table(Fezf2_vs_GFP_rank_CSMN,"CSMN_geneset_enrichment.txt",quote=F,sep="\t",row.names=F) | |
write.table(Fezf2_vs_GFP_rank_CPN,"CPN_geneset_enrichment.txt",quote=F,sep="\t",row.names=F) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment