Created
March 22, 2019 06:37
-
-
Save MagallanesFito/155d00ac8ab2a8242f3789f29e3640a7 to your computer and use it in GitHub Desktop.
Simple naive bayes implementation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
# -*- coding: utf-8 -*- | |
#Operaciones sobre diccionarios | |
import operator | |
from random import randint | |
#Importa el dataframe y lo guarda en un diccionario | |
def load_data(filename): | |
df = {} | |
file = open(filename,'r') | |
for line in file: | |
currLine = line.split(",") | |
currLine[-1] = currLine[-1].rstrip() | |
if len(df) == 0: | |
for colname in currLine: | |
df[colname] = [] | |
else: | |
headers = [key for key in df.keys()] | |
for i in range(len(headers)): | |
df[headers[i]].append(currLine[i]) | |
df.pop([key for key in df.keys()][0]) | |
file.close() | |
return df | |
#Obtener probabilidad de un atributo categorico pertenezca a una clase | |
def getProbability(column,at,class_,df,goal_class): | |
count_class = sum([e==class_ for e in df[goal_class]]) | |
times = 0 | |
for i in range(len(df[goal_class])): | |
if df[column][i] == at and df[goal_class][i] == class_: | |
times = times+1 | |
if count_class == 0: | |
print(column+at+class_) | |
return(times/count_class) | |
#Funcion para probabilidad de clase P("yes"),P("No") | |
def getMarginal(class_,goal_class,df): | |
times = sum([e==class_ for e in df[goal_class]]) | |
return (times/len(df[goal_class])) | |
'''Obtiene un diccionario de la forma dict[column][attribute][class] | |
Que representa P(column=atribute | class) para cada columna,atributo y clase. | |
Esta tabla se utiliza para prediccion ''' | |
def train(df): | |
p = {} | |
columns = [key for key in df.keys()] | |
#Probabilidad marginal | |
goal_class = columns[-1] | |
classes = set(df[goal_class]) | |
for class_ in classes: | |
p[class_] = getMarginal(class_,goal_class,df) | |
for column in columns[:-1]: | |
#Solamente para features categoricas | |
attr = set(df[column]) | |
p[column] = {} | |
for at in attr: | |
p[column][at] = {} | |
for class_ in classes: | |
p[column][at][class_] = getProbability(column,at,class_,df,goal_class) | |
return(p,columns[:-1],classes) | |
''' Utilizando la tabla generada en la funcion train, generar | |
las predicciones de clase, en este caso solo obtiene la prediccion, | |
no la probabilidad de pertenencia. ''' | |
def predict(p_cond,example,columns,classes): | |
prob_class = {} | |
for class_ in classes: | |
prob_class[class_] = 1 | |
for i in range(len(columns)): | |
prob_class[class_]*=(p_cond[columns[i]][example[i]][class_]) | |
prob_class[class_]*=p_cond[class_] | |
return(max(prob_class.items(),key=operator.itemgetter(1))[0]) | |
''' Genera un ejemplo aleatorio del dataframe''' | |
def generateRandomExample(df,cols): | |
example = [] | |
for column in cols: | |
example.append(df[column][randint(0,len(df[column]))]) | |
return example | |
data_frame = load_data("data.csv") | |
p_cond,cols,classes = train(data_frame) | |
example = ["Sol","Baja","Alta","Fuerte"] | |
#example = generateRandomExample(data_frame,cols) | |
predicted_class = predict(p_cond,example,cols,classes) | |
print(predicted_class) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment