Last active
November 10, 2024 23:09
-
-
Save MatsuuraKentaro/952b3301686c10adcb13 to your computer and use it in GitHub Desktop.
Tweedie distribution in Stan
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
data { | |
int N; | |
int M; | |
real<lower=0> Y[N]; | |
} | |
parameters { | |
real<lower=0> mu; | |
real<lower=0> phi; | |
real<lower=1, upper=2> theta; | |
} | |
transformed parameters { | |
real lambda = 1/phi*mu^(2-theta)/(2-theta); | |
real alpha = (2-theta)/(theta-1); | |
real beta = 1/phi*mu^(1-theta)/(theta-1); | |
} | |
model { | |
mu ~ cauchy(0, 5); | |
phi ~ cauchy(0, 5); | |
for (n in 1:N) { | |
if (Y[n] == 0) { | |
target += -lambda; | |
} else { | |
vector[M] ps; | |
for (m in 1:M) | |
ps[m] = poisson_lpmf(m | lambda) + gamma_lpdf(Y[n] | m*alpha, beta); | |
target += log_sum_exp(ps); | |
} | |
} | |
} |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(rstan) | |
library(tweedie) | |
stanmodel <- stan_model(file='model/model.stan') | |
N1 <- 200 | |
M1 <- 30 | |
Y1 <- rtweedie(N1, power=1.3, mu=1, phi=1) | |
data1 <- list(N=N1, M=M1, Y=Y1) | |
fit1 <- sampling(stanmodel, data=data1) | |
N2 <- 1000 | |
M2 <- 30 | |
Y2 <- rtweedie(N2, power=1.01, mu=3, phi=1) | |
data2 <- list(N=N2, M=M2, Y=Y2) | |
fit2 <- sampling(stanmodel, data=data2) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
I got it, many thanks.