Created
December 27, 2016 06:08
-
-
Save MatsuuraKentaro/fdceca2a9250da63402a9b06baff957b to your computer and use it in GitHub Desktop.
Spot detection using Markov field model with UBN (Uniformly Boosted Normal) distribution
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
data { | |
int I; | |
int J; | |
matrix[I,J] Y; | |
real<lower=0> U; | |
} | |
parameters { | |
matrix<lower=-5, upper=5>[I,J] mu; | |
real<lower=0> s_mu; | |
real<lower=0> s_Y; | |
} | |
model { | |
for (j in 2:J) | |
for (i in 1:I) | |
target += log1p_exp(-log(U) + normal_lpdf(mu[i,j] | mu[i,j-1], s_mu)); | |
for (j in 1:J) | |
for (i in 2:I) | |
target += log1p_exp(-log(U) + normal_lpdf(mu[i,j] | mu[i-1,j], s_mu)); | |
to_vector(Y) ~ normal(to_vector(mu), s_Y); | |
s_mu ~ normal(0, 1); | |
s_Y ~ normal(0, 1); | |
} |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(rstan) | |
set.seed(123) | |
I <- 30 | |
J <- 30 | |
mu <- matrix(0, nrow=I, ncol=J) | |
mu[11:20, 11:20] <- 1.0 | |
noise <- matrix(rnorm(n=I*J, 0, sd=1/3), nrow=I, ncol=J) | |
Y <- mu + noise | |
stanmodel <- stan_model(file='model.stan') | |
data <- list(I=I, J=J, Y=Y, U=0.1) | |
fit <- vb(stanmodel, data=data, init=function() { list(mu=Y, s_Y=1) }, seed=123) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(rstan) | |
set.seed(123) | |
I <- 300 | |
J <- 600 | |
img <- png::readPNG('Enjoy.png') | |
mu <- 1 - img[,,1] | |
noise <- matrix(rnorm(n=I*J, mean=0, sd=1/3), nrow=I, ncol=J) | |
Y <- mu + noise | |
stanmodel <- stan_model(file='model.stan') | |
data <- list(I=I, J=J, Y=Y, U=0.1) | |
fit <- vb(stanmodel, data=data, init=function() { list(mu=Y, s_Y=0.5) }, seed=123, eta=1, adapt_engaged=FALSE) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment