Last active
April 28, 2025 03:47
-
-
Save MichaelBelousov/77a9d014b1c3edca0870c2e89684750d to your computer and use it in GitHub Desktop.
verbose emmalloc for zig wasm32-wasi
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
* Copyright 2018 The Emscripten Authors. All rights reserved. | |
* Emscripten is available under two separate licenses, the MIT license and the | |
* University of Illinois/NCSA Open Source License. Both these licenses can be | |
* found in the LICENSE file. | |
* | |
* Simple minimalistic but efficient sbrk()-based malloc/free that works in | |
* singlethreaded and multithreaded builds. | |
* | |
* Assumptions: | |
* | |
* - sbrk() is used to claim new memory (sbrk handles geometric/linear | |
* - overallocation growth) | |
* - sbrk() can be used by other code outside emmalloc. | |
* - sbrk() is very fast in most cases (internal wasm call). | |
* - sbrk() returns pointers with an alignment of alignof(max_align_t) | |
* | |
* Invariants: | |
* | |
* - Per-allocation header overhead is 8 bytes, smallest allocated payload | |
* amount is 8 bytes, and a multiple of 4 bytes. | |
* - Acquired memory blocks are subdivided into disjoint regions that lie | |
* next to each other. | |
* - A region is either in used or free. | |
* Used regions may be adjacent, and a used and unused region | |
* may be adjacent, but not two unused ones - they would be | |
* merged. | |
* - Memory allocation takes constant time, unless the alloc needs to sbrk() | |
* or memory is very close to being exhausted. | |
* | |
* Debugging: | |
* | |
* - If not NDEBUG, runtime assert()s are in use. | |
* - If EMMALLOC_MEMVALIDATE is defined, a large amount of extra checks are done. | |
* - If EMMALLOC_VERBOSE is defined, a lot of operations are logged | |
* out, in addition to EMMALLOC_MEMVALIDATE. | |
* - Debugging and logging directly uses console.log via uses EM_ASM, not | |
* printf etc., to minimize any risk of debugging or logging depending on | |
* malloc. | |
*/ | |
#include <stdalign.h> | |
#include <stdbool.h> | |
#include <stddef.h> | |
#include <stdint.h> | |
#include <unistd.h> | |
#include <memory.h> | |
#include <assert.h> | |
#include <malloc.h> | |
#include <limits.h> | |
#include <stdlib.h> | |
// MIKE CHANGE START | |
// for printf | |
#include <stdio.h> | |
// MIKE CHANGE END | |
// MIKE CHANGE START | |
#define EMMALLOC_MEMVALIDATE | |
#define EMMALLOC_VERBOSE | |
// MIKE CHANGE END | |
#ifdef __EMSCRIPTEN_TRACING__ | |
#include <emscripten/trace.h> | |
#endif | |
// Defind by the linker to have the address of the start of the heap. | |
extern unsigned char __heap_base; | |
extern unsigned char __heap_end; | |
// Behavior of right shifting a signed integer is compiler implementation defined. | |
static_assert((((int32_t)0x80000000U) >> 31) == -1, "This malloc implementation requires that right-shifting a signed integer produces a sign-extending (arithmetic) shift!"); | |
// Configuration: specifies the minimum alignment that malloc()ed memory outputs. Allocation requests with smaller alignment | |
// than this will yield an allocation with this much alignment. | |
#define MALLOC_ALIGNMENT alignof(max_align_t) | |
static_assert(alignof(max_align_t) == 16, "max_align_t must be correct"); | |
#define EMMALLOC_EXPORT __attribute__((weak)) | |
#define MIN(x, y) ((x) < (y) ? (x) : (y)) | |
#define MAX(x, y) ((x) > (y) ? (x) : (y)) | |
#define NUM_FREE_BUCKETS 64 | |
#define BUCKET_BITMASK_T uint64_t | |
// Dynamic memory is subdivided into regions, in the format | |
// <size:uint32_t> ..... <size:uint32_t> | <size:uint32_t> ..... <size:uint32_t> | <size:uint32_t> ..... <size:uint32_t> | ..... | |
// That is, at the bottom and top end of each memory region, the size of that region is stored. That allows traversing the | |
// memory regions backwards and forwards. Because each allocation must be at least a multiple of 4 bytes, the lowest two bits of | |
// each size field is unused. Free regions are distinguished by used regions by having the FREE_REGION_FLAG bit present | |
// in the size field. I.e. for free regions, the size field is odd, and for used regions, the size field reads even. | |
#define FREE_REGION_FLAG 0x1u | |
// Attempts to malloc() more than this many bytes would cause an overflow when calculating the size of a region, | |
// therefore allocations larger than this are short-circuited immediately on entry. | |
#define MAX_ALLOC_SIZE 0xFFFFFFC7u | |
// A free region has the following structure: | |
// <size:size_t> <prevptr> <nextptr> ... <size:size_t> | |
typedef struct Region | |
{ | |
size_t size; | |
// Use a circular doubly linked list to represent free region data. | |
struct Region *prev, *next; | |
// ... N bytes of free data | |
size_t _at_the_end_of_this_struct_size; // do not dereference, this is present for convenient struct sizeof() computation only | |
} Region; | |
// Each memory block starts with a RootRegion at the beginning. | |
// The RootRegion specifies the size of the region block, and forms a linked | |
// list of all RootRegions in the program, starting with `listOfAllRegions` | |
// below. | |
typedef struct RootRegion | |
{ | |
uint32_t size; | |
struct RootRegion *next; | |
uint8_t* endPtr; | |
} RootRegion; | |
#if defined(__EMSCRIPTEN_PTHREADS__) | |
// In multithreaded builds, use a simple global spinlock strategy to acquire/release access to the memory allocator. | |
static volatile uint8_t multithreadingLock = 0; | |
#define MALLOC_ACQUIRE() while(__sync_lock_test_and_set(&multithreadingLock, 1)) { while(multithreadingLock) { /*nop*/ } } | |
#define MALLOC_RELEASE() __sync_lock_release(&multithreadingLock) | |
// Test code to ensure we have tight malloc acquire/release guards in place. | |
#define ASSERT_MALLOC_IS_ACQUIRED() assert(multithreadingLock == 1) | |
#else | |
// In singlethreaded builds, no need for locking. | |
#define MALLOC_ACQUIRE() ((void)0) | |
#define MALLOC_RELEASE() ((void)0) | |
#define ASSERT_MALLOC_IS_ACQUIRED() ((void)0) | |
#endif | |
#define IS_POWER_OF_2(val) (((val) & ((val)-1)) == 0) | |
#define ALIGN_UP(ptr, alignment) ((uint8_t*)((((uintptr_t)(ptr)) + ((alignment)-1)) & ~((alignment)-1))) | |
#define HAS_ALIGNMENT(ptr, alignment) ((((uintptr_t)(ptr)) & ((alignment)-1)) == 0) | |
static_assert(IS_POWER_OF_2(MALLOC_ALIGNMENT), "MALLOC_ALIGNMENT must be a power of two value!"); | |
static_assert(MALLOC_ALIGNMENT >= 4, "Smallest possible MALLOC_ALIGNMENT if 4!"); | |
// A region that contains as payload a single forward linked list of pointers to | |
// root regions of each disjoint region blocks. | |
static RootRegion *listOfAllRegions = NULL; | |
// For each of the buckets, maintain a linked list head node. The head node for each | |
// free region is a sentinel node that does not actually represent any free space, but | |
// the sentinel is used to avoid awkward testing against (if node == freeRegionHeadNode) | |
// when adding and removing elements from the linked list, i.e. we are guaranteed that | |
// the sentinel node is always fixed and there, and the actual free region list elements | |
// start at freeRegionBuckets[i].next each. | |
static Region freeRegionBuckets[NUM_FREE_BUCKETS] = { | |
{ .prev = &freeRegionBuckets[0], .next = &freeRegionBuckets[0] }, | |
{ .prev = &freeRegionBuckets[1], .next = &freeRegionBuckets[1] }, | |
{ .prev = &freeRegionBuckets[2], .next = &freeRegionBuckets[2] }, | |
{ .prev = &freeRegionBuckets[3], .next = &freeRegionBuckets[3] }, | |
{ .prev = &freeRegionBuckets[4], .next = &freeRegionBuckets[4] }, | |
{ .prev = &freeRegionBuckets[5], .next = &freeRegionBuckets[5] }, | |
{ .prev = &freeRegionBuckets[6], .next = &freeRegionBuckets[6] }, | |
{ .prev = &freeRegionBuckets[7], .next = &freeRegionBuckets[7] }, | |
{ .prev = &freeRegionBuckets[8], .next = &freeRegionBuckets[8] }, | |
{ .prev = &freeRegionBuckets[9], .next = &freeRegionBuckets[9] }, | |
{ .prev = &freeRegionBuckets[10], .next = &freeRegionBuckets[10] }, | |
{ .prev = &freeRegionBuckets[11], .next = &freeRegionBuckets[11] }, | |
{ .prev = &freeRegionBuckets[12], .next = &freeRegionBuckets[12] }, | |
{ .prev = &freeRegionBuckets[13], .next = &freeRegionBuckets[13] }, | |
{ .prev = &freeRegionBuckets[14], .next = &freeRegionBuckets[14] }, | |
{ .prev = &freeRegionBuckets[15], .next = &freeRegionBuckets[15] }, | |
{ .prev = &freeRegionBuckets[16], .next = &freeRegionBuckets[16] }, | |
{ .prev = &freeRegionBuckets[17], .next = &freeRegionBuckets[17] }, | |
{ .prev = &freeRegionBuckets[18], .next = &freeRegionBuckets[18] }, | |
{ .prev = &freeRegionBuckets[19], .next = &freeRegionBuckets[19] }, | |
{ .prev = &freeRegionBuckets[20], .next = &freeRegionBuckets[20] }, | |
{ .prev = &freeRegionBuckets[21], .next = &freeRegionBuckets[21] }, | |
{ .prev = &freeRegionBuckets[22], .next = &freeRegionBuckets[22] }, | |
{ .prev = &freeRegionBuckets[23], .next = &freeRegionBuckets[23] }, | |
{ .prev = &freeRegionBuckets[24], .next = &freeRegionBuckets[24] }, | |
{ .prev = &freeRegionBuckets[25], .next = &freeRegionBuckets[25] }, | |
{ .prev = &freeRegionBuckets[26], .next = &freeRegionBuckets[26] }, | |
{ .prev = &freeRegionBuckets[27], .next = &freeRegionBuckets[27] }, | |
{ .prev = &freeRegionBuckets[28], .next = &freeRegionBuckets[28] }, | |
{ .prev = &freeRegionBuckets[29], .next = &freeRegionBuckets[29] }, | |
{ .prev = &freeRegionBuckets[30], .next = &freeRegionBuckets[30] }, | |
{ .prev = &freeRegionBuckets[31], .next = &freeRegionBuckets[31] }, | |
{ .prev = &freeRegionBuckets[32], .next = &freeRegionBuckets[32] }, | |
{ .prev = &freeRegionBuckets[33], .next = &freeRegionBuckets[33] }, | |
{ .prev = &freeRegionBuckets[34], .next = &freeRegionBuckets[34] }, | |
{ .prev = &freeRegionBuckets[35], .next = &freeRegionBuckets[35] }, | |
{ .prev = &freeRegionBuckets[36], .next = &freeRegionBuckets[36] }, | |
{ .prev = &freeRegionBuckets[37], .next = &freeRegionBuckets[37] }, | |
{ .prev = &freeRegionBuckets[38], .next = &freeRegionBuckets[38] }, | |
{ .prev = &freeRegionBuckets[39], .next = &freeRegionBuckets[39] }, | |
{ .prev = &freeRegionBuckets[40], .next = &freeRegionBuckets[40] }, | |
{ .prev = &freeRegionBuckets[41], .next = &freeRegionBuckets[41] }, | |
{ .prev = &freeRegionBuckets[42], .next = &freeRegionBuckets[42] }, | |
{ .prev = &freeRegionBuckets[43], .next = &freeRegionBuckets[43] }, | |
{ .prev = &freeRegionBuckets[44], .next = &freeRegionBuckets[44] }, | |
{ .prev = &freeRegionBuckets[45], .next = &freeRegionBuckets[45] }, | |
{ .prev = &freeRegionBuckets[46], .next = &freeRegionBuckets[46] }, | |
{ .prev = &freeRegionBuckets[47], .next = &freeRegionBuckets[47] }, | |
{ .prev = &freeRegionBuckets[48], .next = &freeRegionBuckets[48] }, | |
{ .prev = &freeRegionBuckets[49], .next = &freeRegionBuckets[49] }, | |
{ .prev = &freeRegionBuckets[50], .next = &freeRegionBuckets[50] }, | |
{ .prev = &freeRegionBuckets[51], .next = &freeRegionBuckets[51] }, | |
{ .prev = &freeRegionBuckets[52], .next = &freeRegionBuckets[52] }, | |
{ .prev = &freeRegionBuckets[53], .next = &freeRegionBuckets[53] }, | |
{ .prev = &freeRegionBuckets[54], .next = &freeRegionBuckets[54] }, | |
{ .prev = &freeRegionBuckets[55], .next = &freeRegionBuckets[55] }, | |
{ .prev = &freeRegionBuckets[56], .next = &freeRegionBuckets[56] }, | |
{ .prev = &freeRegionBuckets[57], .next = &freeRegionBuckets[57] }, | |
{ .prev = &freeRegionBuckets[58], .next = &freeRegionBuckets[58] }, | |
{ .prev = &freeRegionBuckets[59], .next = &freeRegionBuckets[59] }, | |
{ .prev = &freeRegionBuckets[60], .next = &freeRegionBuckets[60] }, | |
{ .prev = &freeRegionBuckets[61], .next = &freeRegionBuckets[61] }, | |
{ .prev = &freeRegionBuckets[62], .next = &freeRegionBuckets[62] }, | |
{ .prev = &freeRegionBuckets[63], .next = &freeRegionBuckets[63] }, | |
}; | |
// A bitmask that tracks the population status for each of the 64 distinct memory regions: | |
// a zero at bit position i means that the free list bucket i is empty. This bitmask is | |
// used to avoid redundant scanning of the 64 different free region buckets: instead by | |
// looking at the bitmask we can find in constant time an index to a free region bucket | |
// that contains free memory of desired size. | |
static BUCKET_BITMASK_T freeRegionBucketsUsed = 0; | |
// Amount of bytes taken up by allocation header data | |
#define REGION_HEADER_SIZE (2*sizeof(size_t)) | |
// Smallest allocation size that is possible is 2*pointer size, since payload of each region must at least contain space | |
// to store the free region linked list prev and next pointers. An allocation size smaller than this will be rounded up | |
// to this size. | |
#define SMALLEST_ALLOCATION_SIZE (2*sizeof(void*)) | |
/* Subdivide regions of free space into distinct circular doubly linked lists, where each linked list | |
represents a range of free space blocks. The following function compute_free_list_bucket() converts | |
an allocation size to the bucket index that should be looked at. The buckets are grouped as follows: | |
Bucket 0: [8, 15], range size=8 | |
Bucket 1: [16, 23], range size=8 | |
Bucket 2: [24, 31], range size=8 | |
Bucket 3: [32, 39], range size=8 | |
Bucket 4: [40, 47], range size=8 | |
Bucket 5: [48, 55], range size=8 | |
Bucket 6: [56, 63], range size=8 | |
Bucket 7: [64, 71], range size=8 | |
Bucket 8: [72, 79], range size=8 | |
Bucket 9: [80, 87], range size=8 | |
Bucket 10: [88, 95], range size=8 | |
Bucket 11: [96, 103], range size=8 | |
Bucket 12: [104, 111], range size=8 | |
Bucket 13: [112, 119], range size=8 | |
Bucket 14: [120, 159], range size=40 | |
Bucket 15: [160, 191], range size=32 | |
Bucket 16: [192, 223], range size=32 | |
Bucket 17: [224, 255], range size=32 | |
Bucket 18: [256, 319], range size=64 | |
Bucket 19: [320, 383], range size=64 | |
Bucket 20: [384, 447], range size=64 | |
Bucket 21: [448, 511], range size=64 | |
Bucket 22: [512, 639], range size=128 | |
Bucket 23: [640, 767], range size=128 | |
Bucket 24: [768, 895], range size=128 | |
Bucket 25: [896, 1023], range size=128 | |
Bucket 26: [1024, 1279], range size=256 | |
Bucket 27: [1280, 1535], range size=256 | |
Bucket 28: [1536, 1791], range size=256 | |
Bucket 29: [1792, 2047], range size=256 | |
Bucket 30: [2048, 2559], range size=512 | |
Bucket 31: [2560, 3071], range size=512 | |
Bucket 32: [3072, 3583], range size=512 | |
Bucket 33: [3584, 6143], range size=2560 | |
Bucket 34: [6144, 8191], range size=2048 | |
Bucket 35: [8192, 12287], range size=4096 | |
Bucket 36: [12288, 16383], range size=4096 | |
Bucket 37: [16384, 24575], range size=8192 | |
Bucket 38: [24576, 32767], range size=8192 | |
Bucket 39: [32768, 49151], range size=16384 | |
Bucket 40: [49152, 65535], range size=16384 | |
Bucket 41: [65536, 98303], range size=32768 | |
Bucket 42: [98304, 131071], range size=32768 | |
Bucket 43: [131072, 196607], range size=65536 | |
Bucket 44: [196608, 262143], range size=65536 | |
Bucket 45: [262144, 393215], range size=131072 | |
Bucket 46: [393216, 524287], range size=131072 | |
Bucket 47: [524288, 786431], range size=262144 | |
Bucket 48: [786432, 1048575], range size=262144 | |
Bucket 49: [1048576, 1572863], range size=524288 | |
Bucket 50: [1572864, 2097151], range size=524288 | |
Bucket 51: [2097152, 3145727], range size=1048576 | |
Bucket 52: [3145728, 4194303], range size=1048576 | |
Bucket 53: [4194304, 6291455], range size=2097152 | |
Bucket 54: [6291456, 8388607], range size=2097152 | |
Bucket 55: [8388608, 12582911], range size=4194304 | |
Bucket 56: [12582912, 16777215], range size=4194304 | |
Bucket 57: [16777216, 25165823], range size=8388608 | |
Bucket 58: [25165824, 33554431], range size=8388608 | |
Bucket 59: [33554432, 50331647], range size=16777216 | |
Bucket 60: [50331648, 67108863], range size=16777216 | |
Bucket 61: [67108864, 100663295], range size=33554432 | |
Bucket 62: [100663296, 134217727], range size=33554432 | |
Bucket 63: 134217728 bytes and larger. */ | |
static_assert(NUM_FREE_BUCKETS == 64, "Following function is tailored specifically for NUM_FREE_BUCKETS == 64 case"); | |
static int compute_free_list_bucket(size_t allocSize) | |
{ | |
if (allocSize < 128) return (allocSize >> 3) - 1; | |
int clz = __builtin_clz(allocSize); | |
int bucketIndex = (clz > 19) ? 110 - (clz<<2) + ((allocSize >> (29-clz)) ^ 4) : MIN(71 - (clz<<1) + ((allocSize >> (30-clz)) ^ 2), NUM_FREE_BUCKETS-1); | |
assert(bucketIndex >= 0); | |
assert(bucketIndex < NUM_FREE_BUCKETS); | |
return bucketIndex; | |
} | |
#define DECODE_CEILING_SIZE(size) ((size_t)((size) & ~FREE_REGION_FLAG)) | |
static Region *prev_region(Region *region) | |
{ | |
size_t prevRegionSize = ((size_t*)region)[-1]; | |
prevRegionSize = DECODE_CEILING_SIZE(prevRegionSize); | |
return (Region*)((uint8_t*)region - prevRegionSize); | |
} | |
static Region *next_region(Region *region) | |
{ | |
return (Region*)((uint8_t*)region + region->size); | |
} | |
static size_t region_ceiling_size(Region *region) | |
{ | |
return ((size_t*)((uint8_t*)region + region->size))[-1]; | |
} | |
static bool region_is_free(Region *r) | |
{ | |
return region_ceiling_size(r) & FREE_REGION_FLAG; | |
} | |
static bool region_is_in_use(Region *r) | |
{ | |
return r->size == region_ceiling_size(r); | |
} | |
static size_t size_of_region_from_ceiling(Region *r) | |
{ | |
size_t size = region_ceiling_size(r); | |
return DECODE_CEILING_SIZE(size); | |
} | |
static bool debug_region_is_consistent(Region *r) | |
{ | |
assert(r); | |
size_t sizeAtBottom = r->size; | |
size_t sizeAtCeiling = size_of_region_from_ceiling(r); | |
return sizeAtBottom == sizeAtCeiling; | |
} | |
static uint8_t *region_payload_start_ptr(Region *region) | |
{ | |
return (uint8_t*)region + sizeof(size_t); | |
} | |
static uint8_t *region_payload_end_ptr(Region *region) | |
{ | |
return (uint8_t*)region + region->size - sizeof(size_t); | |
} | |
static void create_used_region(void *ptr, size_t size) | |
{ | |
assert(ptr); | |
assert(HAS_ALIGNMENT(ptr, sizeof(size_t))); | |
assert(HAS_ALIGNMENT(size, sizeof(size_t))); | |
assert(size >= sizeof(Region)); | |
*(size_t*)ptr = size; | |
((size_t*)ptr)[(size/sizeof(size_t))-1] = size; | |
} | |
static void create_free_region(void *ptr, size_t size) | |
{ | |
assert(ptr); | |
assert(HAS_ALIGNMENT(ptr, sizeof(size_t))); | |
assert(HAS_ALIGNMENT(size, sizeof(size_t))); | |
assert(size >= sizeof(Region)); | |
Region *freeRegion = (Region*)ptr; | |
freeRegion->size = size; | |
((size_t*)ptr)[(size/sizeof(size_t))-1] = size | FREE_REGION_FLAG; | |
} | |
static void prepend_to_free_list(Region *region, Region *prependTo) | |
{ | |
assert(region); | |
assert(prependTo); | |
// N.b. the region we are prepending to is always the sentinel node, | |
// which represents a dummy node that is technically not a free node, so | |
// region_is_free(prependTo) does not hold. | |
assert(region_is_free((Region*)region)); | |
region->next = prependTo; | |
region->prev = prependTo->prev; | |
assert(region->prev); | |
prependTo->prev = region; | |
region->prev->next = region; | |
} | |
static void unlink_from_free_list(Region *region) | |
{ | |
assert(region); | |
assert(region_is_free((Region*)region)); | |
assert(region->prev); | |
assert(region->next); | |
region->prev->next = region->next; | |
region->next->prev = region->prev; | |
} | |
static void link_to_free_list(Region *freeRegion) | |
{ | |
assert(freeRegion); | |
assert(freeRegion->size >= sizeof(Region)); | |
int bucketIndex = compute_free_list_bucket(freeRegion->size-REGION_HEADER_SIZE); | |
Region *freeListHead = freeRegionBuckets + bucketIndex; | |
freeRegion->prev = freeListHead; | |
freeRegion->next = freeListHead->next; | |
assert(freeRegion->next); | |
freeListHead->next = freeRegion; | |
freeRegion->next->prev = freeRegion; | |
freeRegionBucketsUsed |= ((BUCKET_BITMASK_T)1) << bucketIndex; | |
} | |
#ifdef EMMALLOC_MEMVALIDATE | |
static void dump_memory_regions() | |
{ | |
ASSERT_MALLOC_IS_ACQUIRED(); | |
RootRegion *root = listOfAllRegions; | |
// MIKE CHANGE START | |
//MAIN_THREAD_ASYNC_EM_ASM(console.log('All memory regions:')); | |
printf("All memory regions:\n"); | |
// MIKE CHANGE END | |
while(root) | |
{ | |
Region *r = (Region*)root; | |
assert(debug_region_is_consistent(r)); | |
uint8_t *lastRegionEnd = root->endPtr; | |
// MIKE CHANGE START | |
//MAIN_THREAD_ASYNC_EM_ASM(console.log('Region block 0x'+($0>>>0).toString(16)+' - 0x'+($1>>>0).toString(16)+ ' ('+($2>>>0)+' bytes):'), | |
//r, lastRegionEnd, lastRegionEnd-(uint8_t*)r); | |
printf("Region block 0x%p - 0x%p (%lu bytes):\n", r, lastRegionEnd, lastRegionEnd-(uint8_t*)r); | |
// MIKE CHANGE END | |
while((uint8_t*)r < lastRegionEnd) | |
{ | |
// MIKE CHANGE START | |
// MAIN_THREAD_ASYNC_EM_ASM(console.log('Region 0x'+($0>>>0).toString(16)+', size: '+($1>>>0)+' ('+($2?"used":"--FREE--")+')'), | |
// r, r->size, region_ceiling_size(r) == r->size); | |
printf("Region 0x%p, size: %lu (%s)\n", | |
r, r->size, region_ceiling_size(r) == r->size ? "used" : "--FREE--"); | |
// MIKE CHANGE END | |
assert(debug_region_is_consistent(r)); | |
size_t sizeFromCeiling = size_of_region_from_ceiling(r); | |
if (sizeFromCeiling != r->size) | |
// MIKE CHANGE START | |
//MAIN_THREAD_ASYNC_EM_ASM(console.log('Corrupt region! Size marker at the end of the region does not match: '+($0>>>0)), sizeFromCeiling); | |
printf("Corrupt region! Size marker at the end of the region does not match: %lu\n", sizeFromCeiling); | |
// MIKE CHANGE END | |
if (r->size == 0) | |
break; | |
r = next_region(r); | |
} | |
root = root->next; | |
// MIKE CHANGE START | |
//MAIN_THREAD_ASYNC_EM_ASM(console.log("")); | |
printf("\n"); | |
// MIKE CHANGE END | |
} | |
// MIKE CHANGE START | |
//MAIN_THREAD_ASYNC_EM_ASM(console.log('Free regions:')); | |
printf("Free regions:\n"); | |
// MIKE CHANGE END | |
for(int i = 0; i < NUM_FREE_BUCKETS; ++i) | |
{ | |
Region *prev = &freeRegionBuckets[i]; | |
Region *fr = freeRegionBuckets[i].next; | |
while(fr != &freeRegionBuckets[i]) | |
{ | |
// MIKE CHANGE START | |
//MAIN_THREAD_ASYNC_EM_ASM(console.log('In bucket '+$0+', free region 0x'+($1>>>0).toString(16)+', size: ' + ($2>>>0) + ' (size at ceiling: '+($3>>>0)+'), prev: 0x' + ($4>>>0).toString(16) + ', next: 0x' + ($5>>>0).toString(16)), | |
//i, fr, fr->size, size_of_region_from_ceiling(fr), fr->prev, fr->next); | |
printf("In bucket %d, free region 0x%p, size: %lu (size at ceiling: %lu), prev: 0x%p, next: 0x%p\n", | |
i, fr, fr->size, size_of_region_from_ceiling(fr), fr->prev, fr->next); | |
// MIKE CHANGE END | |
assert(debug_region_is_consistent(fr)); | |
assert(region_is_free(fr)); | |
assert(fr->prev == prev); | |
prev = fr; | |
assert(fr->next != fr); | |
assert(fr->prev != fr); | |
fr = fr->next; | |
} | |
} | |
// MIKE CHANGE START | |
//MAIN_THREAD_ASYNC_EM_ASM(console.log('Free bucket index map: ' + ($0>>>0).toString(2) + ' ' + ($1>>>0).toString(2)), (uint32_t)(freeRegionBucketsUsed >> 32), (uint32_t)freeRegionBucketsUsed); | |
printf("Free bucket index map: %x %x (WAS BINARY)\n", | |
(uint32_t)(freeRegionBucketsUsed >> 32), (uint32_t)freeRegionBucketsUsed); | |
printf("\n"); | |
// MIKE CHANGE END | |
// MIKE CHANGE START | |
//MAIN_THREAD_ASYNC_EM_ASM(console.log("")); | |
printf("\n"); | |
// MIKE CHANGE END | |
} | |
void emmalloc_dump_memory_regions() | |
{ | |
MALLOC_ACQUIRE(); | |
dump_memory_regions(); | |
MALLOC_RELEASE(); | |
} | |
static int validate_memory_regions() | |
{ | |
ASSERT_MALLOC_IS_ACQUIRED(); | |
RootRegion *root = listOfAllRegions; | |
while(root) | |
{ | |
Region *r = (Region*)root; | |
if (!debug_region_is_consistent(r)) | |
{ | |
// MIKE CHANGE START | |
//MAIN_THREAD_ASYNC_EM_ASM(console.error('Used region 0x'+($0>>>0).toString(16)+', size: '+($1>>>0)+' ('+($2?"used":"--FREE--")+') is corrupt (size markers in the beginning and at the end of the region do not match!)'), | |
//r, r->size, region_ceiling_size(r) == r->size); | |
printf("Used region 0x%p, size: %lu (%s) is corrupt (size markers in the beginning and at the end of the region do not match!)\n", | |
r, r->size, region_ceiling_size(r) == r->size ? "used" : "--FREE--"); | |
// MIKE CHANGE END | |
return 1; | |
} | |
uint8_t *lastRegionEnd = root->endPtr; | |
while((uint8_t*)r < lastRegionEnd) | |
{ | |
if (!debug_region_is_consistent(r)) | |
{ | |
// MIKE CHANGE START | |
//MAIN_THREAD_ASYNC_EM_ASM(console.error('Used region 0x'+($0>>>0).toString(16)+', size: '+($1>>>0)+' ('+($2?"used":"--FREE--")+') is corrupt (size markers in the beginning and at the end of the region do not match!)'), | |
//r, r->size, region_ceiling_size(r) == r->size); | |
printf("Used region 0x%p, size: %lu (%s) is corrupt (size markers in the beginning and at the end of the region do not match!)\n", | |
r, r->size, region_ceiling_size(r) == r->size ? "used" : "--FREE--"); | |
// MIKE CHANGE END | |
return 1; | |
} | |
if (r->size == 0) | |
break; | |
r = next_region(r); | |
} | |
root = root->next; | |
} | |
for(int i = 0; i < NUM_FREE_BUCKETS; ++i) | |
{ | |
Region *prev = &freeRegionBuckets[i]; | |
Region *fr = freeRegionBuckets[i].next; | |
while(fr != &freeRegionBuckets[i]) | |
{ | |
if (!debug_region_is_consistent(fr) || !region_is_free(fr) || fr->prev != prev || fr->next == fr || fr->prev == fr) | |
{ | |
// MIKE CHANGE START | |
//MAIN_THREAD_ASYNC_EM_ASM(console.log('In bucket '+$0+', free region 0x'+($1>>>0).toString(16)+', size: ' + ($2>>>0) + ' (size at ceiling: '+($3>>>0)+'), prev: 0x' + ($4>>>0).toString(16) + ', next: 0x' + ($5>>>0).toString(16) + ' is corrupt!'), | |
//i, fr, fr->size, size_of_region_from_ceiling(fr), fr->prev, fr->next); | |
printf("In bucket %d, free region 0x%p, size: %lu (size at ceiling: %lu), prev: 0x%p, next: 0x%p is corrupt!\n", | |
i, fr, fr->size, size_of_region_from_ceiling(fr), fr->prev, fr->next); | |
// MIKE CHANGE END | |
return 1; | |
} | |
prev = fr; | |
fr = fr->next; | |
} | |
} | |
return 0; | |
} | |
int emmalloc_validate_memory_regions() | |
{ | |
MALLOC_ACQUIRE(); | |
int memoryError = validate_memory_regions(); | |
MALLOC_RELEASE(); | |
return memoryError; | |
} | |
#endif | |
static bool claim_more_memory(size_t numBytes) | |
{ | |
#ifdef EMMALLOC_VERBOSE | |
// MIKE CHANGE START | |
//MAIN_THREAD_ASYNC_EM_ASM(console.log('claim_more_memory(numBytes='+($0>>>0)+ ')'), numBytes); | |
printf("claim_more_memory(numBytes=%lu)\n", numBytes); | |
// MIKE CHANGE END | |
#endif | |
#ifdef EMMALLOC_MEMVALIDATE | |
validate_memory_regions(); | |
#endif | |
uint8_t *startPtr; | |
uint8_t *endPtr; | |
do { | |
// If this is the first time we're called, see if we can use | |
// the initial heap memory set up by wasm-ld. | |
if (!listOfAllRegions) { | |
unsigned char *heap_base = &__heap_base; | |
unsigned char *heap_end = &__heap_end; | |
if (heap_end < heap_base) { | |
__builtin_trap(); | |
} | |
if (numBytes <= (size_t)(heap_end - heap_base)) { | |
startPtr = heap_base; | |
endPtr = heap_end; | |
break; | |
} | |
} | |
// Round numBytes up to the nearest page size. | |
numBytes = (numBytes + (PAGE_SIZE-1)) & -PAGE_SIZE; | |
// Claim memory via sbrk | |
startPtr = (uint8_t*)sbrk(numBytes); | |
if ((intptr_t)startPtr == -1) | |
{ | |
#ifdef EMMALLOC_VERBOSE | |
// MIKE CHANGE START | |
//MAIN_THREAD_ASYNC_EM_ASM(console.error('claim_more_memory: sbrk failed!')); | |
printf("claim_more_memory: sbrk failed!\n"); | |
// MIKE CHANGE END | |
#endif | |
return false; | |
} | |
#ifdef EMMALLOC_VERBOSE | |
// MIKE CHANGE START | |
//MAIN_THREAD_ASYNC_EM_ASM(console.log('claim_more_memory: claimed 0x' + ($0>>>0).toString(16) + ' - 0x' + ($1>>>0).toString(16) + ' (' + ($2>>>0) + ' bytes) via sbrk()'), startPtr, startPtr + numBytes, numBytes); | |
printf("claim_more_memory: claimed 0x%p- 0x%p %lu bytes) via sbrk()\n", startPtr, startPtr + numBytes, numBytes); | |
// MIKE CHANGE END | |
#endif | |
assert(HAS_ALIGNMENT(startPtr, alignof(size_t))); | |
endPtr = startPtr + numBytes; | |
} while (0); | |
// Create a sentinel region at the end of the new heap block | |
Region *endSentinelRegion = (Region*)(endPtr - sizeof(Region)); | |
create_used_region(endSentinelRegion, sizeof(Region)); | |
// If we are the sole user of sbrk(), it will feed us continuous/consecutive memory addresses - take advantage | |
// of that if so: instead of creating two disjoint memory regions blocks, expand the previous one to a larger size. | |
uint8_t *previousSbrkEndAddress = listOfAllRegions ? listOfAllRegions->endPtr : 0; | |
if (startPtr == previousSbrkEndAddress) | |
{ | |
Region *prevEndSentinel = prev_region((Region*)startPtr); | |
assert(debug_region_is_consistent(prevEndSentinel)); | |
assert(region_is_in_use(prevEndSentinel)); | |
Region *prevRegion = prev_region(prevEndSentinel); | |
assert(debug_region_is_consistent(prevRegion)); | |
listOfAllRegions->endPtr = endPtr; | |
// Two scenarios, either the last region of the previous block was in use, in which case we need to create | |
// a new free region in the newly allocated space; or it was free, in which case we can extend that region | |
// to cover a larger size. | |
if (region_is_free(prevRegion)) | |
{ | |
size_t newFreeRegionSize = (uint8_t*)endSentinelRegion - (uint8_t*)prevRegion; | |
unlink_from_free_list(prevRegion); | |
create_free_region(prevRegion, newFreeRegionSize); | |
link_to_free_list(prevRegion); | |
return true; | |
} | |
// else: last region of the previous block was in use. Since we are joining two consecutive sbrk() blocks, | |
// we can swallow the end sentinel of the previous block away. | |
startPtr -= sizeof(Region); | |
} | |
else | |
{ | |
// Create a root region at the start of the heap block | |
create_used_region(startPtr, sizeof(Region)); | |
// Dynamic heap start region: | |
RootRegion *newRegionBlock = (RootRegion*)startPtr; | |
newRegionBlock->next = listOfAllRegions; // Pointer to next region block head | |
newRegionBlock->endPtr = endPtr; // Pointer to the end address of this region block | |
listOfAllRegions = newRegionBlock; | |
startPtr += sizeof(Region); | |
} | |
// Create a new memory region for the new claimed free space. | |
create_free_region(startPtr, (uint8_t*)endSentinelRegion - startPtr); | |
link_to_free_list((Region*)startPtr); | |
return true; | |
} | |
#if 0 | |
// Initialize emmalloc during static initialization. | |
// See system/lib/README.md for static constructor ordering. | |
__attribute__((constructor(47))) | |
static void initialize_emmalloc_heap() | |
{ | |
// Initialize circular doubly linked lists representing free space | |
// Never useful to unroll this for loop, just takes up code size. | |
#pragma clang loop unroll(disable) | |
for(int i = 0; i < NUM_FREE_BUCKETS; ++i) | |
freeRegionBuckets[i].prev = freeRegionBuckets[i].next = &freeRegionBuckets[i]; | |
#ifdef EMMALLOC_VERBOSE | |
MAIN_THREAD_ASYNC_EM_ASM(console.log('initialize_emmalloc_heap()')); | |
#endif | |
// Start with a tiny dynamic region. | |
claim_more_memory(3*sizeof(Region)); | |
} | |
void emmalloc_blank_slate_from_orbit() | |
{ | |
MALLOC_ACQUIRE(); | |
listOfAllRegions = NULL; | |
freeRegionBucketsUsed = 0; | |
initialize_emmalloc_heap(); | |
MALLOC_RELEASE(); | |
} | |
#endif | |
static void *attempt_allocate(Region *freeRegion, size_t alignment, size_t size) | |
{ | |
ASSERT_MALLOC_IS_ACQUIRED(); | |
assert(freeRegion); | |
// Look at the next potential free region to allocate into. | |
// First, we should check if the free region has enough of payload bytes contained | |
// in it to accommodate the new allocation. This check needs to take account the | |
// requested allocation alignment, so the payload memory area needs to be rounded | |
// upwards to the desired alignment. | |
uint8_t *payloadStartPtr = region_payload_start_ptr(freeRegion); | |
uint8_t *payloadStartPtrAligned = ALIGN_UP(payloadStartPtr, alignment); | |
uint8_t *payloadEndPtr = region_payload_end_ptr(freeRegion); | |
// Do we have enough free space, taking into account alignment? | |
if (payloadStartPtrAligned + size > payloadEndPtr) | |
return NULL; | |
// We have enough free space, so the memory allocation will be made into this region. Remove this free region | |
// from the list of free regions: whatever slop remains will be later added back to the free region pool. | |
unlink_from_free_list(freeRegion); | |
// Before we proceed further, fix up the boundary of this region and the region that precedes this one, | |
// so that the boundary between the two regions happens at a right spot for the payload to be aligned. | |
if (payloadStartPtr != payloadStartPtrAligned) | |
{ | |
Region *prevRegion = prev_region((Region*)freeRegion); | |
// We never have two free regions adjacent to each other, so the region before this free | |
// region should be in use. | |
assert(region_is_in_use(prevRegion)); | |
size_t regionBoundaryBumpAmount = payloadStartPtrAligned - payloadStartPtr; | |
size_t newThisRegionSize = freeRegion->size - regionBoundaryBumpAmount; | |
create_used_region(prevRegion, prevRegion->size + regionBoundaryBumpAmount); | |
freeRegion = (Region *)((uint8_t*)freeRegion + regionBoundaryBumpAmount); | |
freeRegion->size = newThisRegionSize; | |
} | |
// Next, we need to decide whether this region is so large that it should be split into two regions, | |
// one representing the newly used memory area, and at the high end a remaining leftover free area. | |
// This splitting to two is done always if there is enough space for the high end to fit a region. | |
// Carve 'size' bytes of payload off this region. So, | |
// [sz prev next sz] | |
// becomes | |
// [sz payload sz] [sz prev next sz] | |
if (sizeof(Region) + REGION_HEADER_SIZE + size <= freeRegion->size) | |
{ | |
// There is enough space to keep a free region at the end of the carved out block | |
// -> construct the new block | |
Region *newFreeRegion = (Region *)((uint8_t*)freeRegion + REGION_HEADER_SIZE + size); | |
create_free_region(newFreeRegion, freeRegion->size - size - REGION_HEADER_SIZE); | |
link_to_free_list(newFreeRegion); | |
// Recreate the resized Region under its new size. | |
create_used_region(freeRegion, size + REGION_HEADER_SIZE); | |
} | |
else | |
{ | |
// There is not enough space to split the free memory region into used+free parts, so consume the whole | |
// region as used memory, not leaving a free memory region behind. | |
// Initialize the free region as used by resetting the ceiling size to the same value as the size at bottom. | |
((size_t*)((uint8_t*)freeRegion + freeRegion->size))[-1] = freeRegion->size; | |
} | |
#ifdef __EMSCRIPTEN_TRACING__ | |
emscripten_trace_record_allocation(freeRegion, freeRegion->size); | |
#endif | |
#ifdef EMMALLOC_VERBOSE | |
// MIKE CHANGE START | |
//MAIN_THREAD_ASYNC_EM_ASM(console.log('attempt_allocate - succeeded allocating memory, region ptr=0x' + ($0>>>0).toString(16) + ', align=' + $1 + ', payload size=' + ($2>>>0) + ' bytes)'), freeRegion, alignment, size); | |
printf("attempt_allocate - succeeded allocating memory, region ptr=0x%p, align=%lu, payload size= %lu bytes)\n", freeRegion, alignment, size); | |
// MIKE CHANGE END | |
#endif | |
return (uint8_t*)freeRegion + sizeof(size_t); | |
} | |
static size_t validate_alloc_alignment(size_t alignment) | |
{ | |
// Cannot perform allocations that are less than 4 byte aligned, because the Region | |
// control structures need to be aligned. Also round up to minimum outputted alignment. | |
alignment = MAX(alignment, MALLOC_ALIGNMENT); | |
// Arbitrary upper limit on alignment - very likely a programming bug if alignment is higher than this. | |
assert(alignment <= 1024*1024); | |
return alignment; | |
} | |
static size_t validate_alloc_size(size_t size) | |
{ | |
assert(size + REGION_HEADER_SIZE > size); | |
// Allocation sizes must be a multiple of pointer sizes, and at least 2*sizeof(pointer). | |
size_t validatedSize = size > SMALLEST_ALLOCATION_SIZE ? (size_t)ALIGN_UP(size, sizeof(Region*)) : SMALLEST_ALLOCATION_SIZE; | |
assert(validatedSize >= size); // 32-bit wraparound should not occur, too large sizes should be stopped before | |
return validatedSize; | |
} | |
static void *allocate_memory(size_t alignment, size_t size) | |
{ | |
ASSERT_MALLOC_IS_ACQUIRED(); | |
#ifdef EMMALLOC_VERBOSE | |
// MIKE CHANGE START | |
//MAIN_THREAD_ASYNC_EM_ASM(console.log('allocate_memory(align=' + $0 + ', size=' + ($1>>>0) + ' bytes)'), alignment, size); | |
printf("allocate_memory(align=%lu, size=%lu bytes)\n", alignment, size); | |
// MIKE CHANGE END | |
#endif | |
#ifdef EMMALLOC_MEMVALIDATE | |
validate_memory_regions(); | |
#endif | |
if (!IS_POWER_OF_2(alignment)) | |
{ | |
#ifdef EMMALLOC_VERBOSE | |
// MIKE CHANGE START | |
//MAIN_THREAD_ASYNC_EM_ASM(console.log('Allocation failed: alignment not power of 2!')); | |
printf("Allocation failed: alignment not power of 2!\n"); | |
// MIKE CHANGE END | |
#endif | |
return 0; | |
} | |
if (size > MAX_ALLOC_SIZE) | |
{ | |
#ifdef EMMALLOC_VERBOSE | |
// MIKE CHANGE START | |
//MAIN_THREAD_ASYNC_EM_ASM(console.log('Allocation failed: attempted allocation size is too large: ' + ($0 >>> 0) + 'bytes! (negative integer wraparound?)'), size); | |
printf("Allocation failed: attempted allocation size is too large: %lu bytes! (negative integer wraparound?)\n", size); | |
// MIKE CHANGE END | |
#endif | |
return 0; | |
} | |
alignment = validate_alloc_alignment(alignment); | |
size = validate_alloc_size(size); | |
// Attempt to allocate memory starting from smallest bucket that can contain the required amount of memory. | |
// Under normal alignment conditions this should always be the first or second bucket we look at, but if | |
// performing an allocation with complex alignment, we may need to look at multiple buckets. | |
int bucketIndex = compute_free_list_bucket(size); | |
BUCKET_BITMASK_T bucketMask = freeRegionBucketsUsed >> bucketIndex; | |
// Loop through each bucket that has free regions in it, based on bits set in freeRegionBucketsUsed bitmap. | |
while(bucketMask) | |
{ | |
BUCKET_BITMASK_T indexAdd = __builtin_ctzll(bucketMask); | |
bucketIndex += indexAdd; | |
bucketMask >>= indexAdd; | |
assert(bucketIndex >= 0); | |
assert(bucketIndex <= NUM_FREE_BUCKETS-1); | |
assert(freeRegionBucketsUsed & (((BUCKET_BITMASK_T)1) << bucketIndex)); | |
Region *freeRegion = freeRegionBuckets[bucketIndex].next; | |
assert(freeRegion); | |
if (freeRegion != &freeRegionBuckets[bucketIndex]) | |
{ | |
void *ptr = attempt_allocate(freeRegion, alignment, size); | |
if (ptr) | |
return ptr; | |
// We were not able to allocate from the first region found in this bucket, so penalize | |
// the region by cycling it to the end of the doubly circular linked list. (constant time) | |
// This provides a randomized guarantee that when performing allocations of size k to a | |
// bucket of [k-something, k+something] range, we will not always attempt to satisfy the | |
// allocation from the same available region at the front of the list, but we try each | |
// region in turn. | |
unlink_from_free_list(freeRegion); | |
prepend_to_free_list(freeRegion, &freeRegionBuckets[bucketIndex]); | |
// But do not stick around to attempt to look at other regions in this bucket - move | |
// to search the next populated bucket index if this did not fit. This gives a practical | |
// "allocation in constant time" guarantee, since the next higher bucket will only have | |
// regions that are all of strictly larger size than the requested allocation. Only if | |
// there is a difficult alignment requirement we may fail to perform the allocation from | |
// a region in the next bucket, and if so, we keep trying higher buckets until one of them | |
// works. | |
++bucketIndex; | |
bucketMask >>= 1; | |
} | |
else | |
{ | |
// This bucket was not populated after all with any regions, | |
// but we just had a stale bit set to mark a populated bucket. | |
// Reset the bit to update latest status so that we do not | |
// redundantly look at this bucket again. | |
freeRegionBucketsUsed &= ~(((BUCKET_BITMASK_T)1) << bucketIndex); | |
bucketMask ^= 1; | |
} | |
// Instead of recomputing bucketMask from scratch at the end of each loop, it is updated as we go, | |
// to avoid undefined behavior with (x >> 32)/(x >> 64) when bucketIndex reaches 32/64, (the shift would comes out as a no-op instead of 0). | |
assert((bucketIndex == NUM_FREE_BUCKETS && bucketMask == 0) || (bucketMask == freeRegionBucketsUsed >> bucketIndex)); | |
} | |
// None of the buckets were able to accommodate an allocation. If this happens we are almost out of memory. | |
// The largest bucket might contain some suitable regions, but we only looked at one region in that bucket, so | |
// as a last resort, loop through more free regions in the bucket that represents the largest allocations available. | |
// But only if the bucket representing largest allocations available is not any of the first thirty buckets, | |
// these represent allocatable areas less than <1024 bytes - which could be a lot of scrap. | |
// In such case, prefer to sbrk() in more memory right away. | |
int largestBucketIndex = NUM_FREE_BUCKETS - 1 - __builtin_clzll(freeRegionBucketsUsed); | |
// freeRegion will be null if there is absolutely no memory left. (all buckets are 100% used) | |
Region *freeRegion = freeRegionBucketsUsed ? freeRegionBuckets[largestBucketIndex].next : 0; | |
if (freeRegionBucketsUsed >> 30) | |
{ | |
// Look only at a constant number of regions in this bucket max, to avoid bad worst case behavior. | |
// If this many regions cannot find free space, we give up and prefer to sbrk() more instead. | |
const int maxRegionsToTryBeforeGivingUp = 99; | |
int numTriesLeft = maxRegionsToTryBeforeGivingUp; | |
while(freeRegion != &freeRegionBuckets[largestBucketIndex] && numTriesLeft-- > 0) | |
{ | |
void *ptr = attempt_allocate(freeRegion, alignment, size); | |
if (ptr) | |
return ptr; | |
freeRegion = freeRegion->next; | |
} | |
} | |
// We were unable to find a free memory region. Must sbrk() in more memory! | |
size_t numBytesToClaim = size+sizeof(Region)*3; | |
assert(numBytesToClaim > size); // 32-bit wraparound should not happen here, allocation size has been validated above! | |
bool success = claim_more_memory(numBytesToClaim); | |
if (success) | |
return allocate_memory(alignment, size); // Recurse back to itself to try again | |
// also sbrk() failed, we are really really constrained :( As a last resort, go back to looking at the | |
// bucket we already looked at above, continuing where the above search left off - perhaps there are | |
// regions we overlooked the first time that might be able to satisfy the allocation. | |
if (freeRegion) | |
{ | |
while(freeRegion != &freeRegionBuckets[largestBucketIndex]) | |
{ | |
void *ptr = attempt_allocate(freeRegion, alignment, size); | |
if (ptr) | |
return ptr; | |
freeRegion = freeRegion->next; | |
} | |
} | |
#ifdef EMMALLOC_VERBOSE | |
// MIKE CHANGE START | |
//MAIN_THREAD_ASYNC_EM_ASM(console.log('Could not find a free memory block!')); | |
printf("Could not find a free memory block!\n"); | |
// MIKE CHANGE END | |
#endif | |
return 0; | |
} | |
static | |
void *emmalloc_memalign(size_t alignment, size_t size) | |
{ | |
MALLOC_ACQUIRE(); | |
void *ptr = allocate_memory(alignment, size); | |
MALLOC_RELEASE(); | |
return ptr; | |
} | |
#if 0 | |
void * EMMALLOC_EXPORT memalign(size_t alignment, size_t size) | |
{ | |
return emmalloc_memalign(alignment, size); | |
} | |
#endif | |
void * EMMALLOC_EXPORT aligned_alloc(size_t alignment, size_t size) | |
{ | |
if ((alignment % sizeof(void *) != 0) || (size % alignment) != 0) | |
return 0; | |
return emmalloc_memalign(alignment, size); | |
} | |
static | |
void *emmalloc_malloc(size_t size) | |
{ | |
return emmalloc_memalign(MALLOC_ALIGNMENT, size); | |
} | |
void * EMMALLOC_EXPORT malloc(size_t size) | |
{ | |
return emmalloc_malloc(size); | |
} | |
static | |
size_t emmalloc_usable_size(void *ptr) | |
{ | |
if (!ptr) | |
return 0; | |
uint8_t *regionStartPtr = (uint8_t*)ptr - sizeof(size_t); | |
Region *region = (Region*)(regionStartPtr); | |
assert(HAS_ALIGNMENT(region, sizeof(size_t))); | |
MALLOC_ACQUIRE(); | |
size_t size = region->size; | |
assert(size >= sizeof(Region)); | |
assert(region_is_in_use(region)); | |
MALLOC_RELEASE(); | |
return size - REGION_HEADER_SIZE; | |
} | |
size_t EMMALLOC_EXPORT malloc_usable_size(void *ptr) | |
{ | |
return emmalloc_usable_size(ptr); | |
} | |
static | |
void emmalloc_free(void *ptr) | |
{ | |
#ifdef EMMALLOC_MEMVALIDATE | |
emmalloc_validate_memory_regions(); | |
#endif | |
if (!ptr) | |
return; | |
#ifdef EMMALLOC_VERBOSE | |
// MIKE CHANGE START | |
//MAIN_THREAD_ASYNC_EM_ASM(console.log('free(ptr=0x'+($0>>>0).toString(16)+')'), ptr); | |
printf("free(ptr=0x%p)\n", ptr); | |
// MIKE CHANGE END | |
#endif | |
uint8_t *regionStartPtr = (uint8_t*)ptr - sizeof(size_t); | |
Region *region = (Region*)(regionStartPtr); | |
assert(HAS_ALIGNMENT(region, sizeof(size_t))); | |
MALLOC_ACQUIRE(); | |
size_t size = region->size; | |
#ifdef EMMALLOC_VERBOSE | |
if (size < sizeof(Region) || !region_is_in_use(region)) | |
{ | |
if (debug_region_is_consistent(region)) | |
// LLVM wasm backend bug: cannot use MAIN_THREAD_ASYNC_EM_ASM() here, that generates internal compiler error | |
// Reproducible by running e.g. other.test_alloc_3GB | |
// MIKE CHANGE START | |
//EM_ASM(console.error('Double free at region ptr 0x' + ($0>>>0).toString(16) + ', region->size: 0x' + ($1>>>0).toString(16) + ', region->sizeAtCeiling: 0x' + ($2>>>0).toString(16) + ')'), region, size, region_ceiling_size(region)); | |
printf("Double free at region ptr 0x%p, region->size: 0x%lx, region->sizeAtCeiling: 0x%lx)\n", region, size, region_ceiling_size(region)); | |
// MIKE CHANGE END | |
else | |
// MIKE CHANGE START | |
//MAIN_THREAD_ASYNC_EM_ASM(console.error('Corrupt region at region ptr 0x' + ($0>>>0).toString(16) + ' region->size: 0x' + ($1>>>0).toString(16) + ', region->sizeAtCeiling: 0x' + ($2>>>0).toString(16) + ')'), region, size, region_ceiling_size(region)); | |
printf("Corrupt region at region ptr 0x%p region->size: 0x%lx, region->sizeAtCeiling: 0x%lx)\n", region, size, region_ceiling_size(region)); | |
// MIKE CHANGE END | |
} | |
#endif | |
assert(size >= sizeof(Region)); | |
assert(region_is_in_use(region)); | |
#ifdef __EMSCRIPTEN_TRACING__ | |
emscripten_trace_record_free(region); | |
#endif | |
// Check merging with left side | |
size_t prevRegionSizeField = ((size_t*)region)[-1]; | |
size_t prevRegionSize = prevRegionSizeField & ~FREE_REGION_FLAG; | |
if (prevRegionSizeField != prevRegionSize) // Previous region is free? | |
{ | |
Region *prevRegion = (Region*)((uint8_t*)region - prevRegionSize); | |
assert(debug_region_is_consistent(prevRegion)); | |
unlink_from_free_list(prevRegion); | |
regionStartPtr = (uint8_t*)prevRegion; | |
size += prevRegionSize; | |
} | |
// Check merging with right side | |
Region *nextRegion = next_region(region); | |
assert(debug_region_is_consistent(nextRegion)); | |
size_t sizeAtEnd = *(size_t*)region_payload_end_ptr(nextRegion); | |
if (nextRegion->size != sizeAtEnd) | |
{ | |
unlink_from_free_list(nextRegion); | |
size += nextRegion->size; | |
} | |
create_free_region(regionStartPtr, size); | |
link_to_free_list((Region*)regionStartPtr); | |
MALLOC_RELEASE(); | |
#ifdef EMMALLOC_MEMVALIDATE | |
emmalloc_validate_memory_regions(); | |
#endif | |
} | |
void EMMALLOC_EXPORT free(void *ptr) | |
{ | |
emmalloc_free(ptr); | |
} | |
// Can be called to attempt to increase or decrease the size of the given region | |
// to a new size (in-place). Returns 1 if resize succeeds, and 0 on failure. | |
static int attempt_region_resize(Region *region, size_t size) | |
{ | |
ASSERT_MALLOC_IS_ACQUIRED(); | |
assert(size > 0); | |
assert(HAS_ALIGNMENT(size, sizeof(size_t))); | |
#ifdef EMMALLOC_VERBOSE | |
// MIKE CHANGE START | |
//MAIN_THREAD_ASYNC_EM_ASM(console.log('attempt_region_resize(region=0x' + ($0>>>0).toString(16) + ', size=' + ($1>>>0) + ' bytes)'), region, size); | |
printf("attempt_region_resize(region=0x%p, size=%lu bytes)\n", region, size); | |
// MIKE CHANGE END | |
#endif | |
// First attempt to resize this region, if the next region that follows this one | |
// is a free region. | |
Region *nextRegion = next_region(region); | |
uint8_t *nextRegionEndPtr = (uint8_t*)nextRegion + nextRegion->size; | |
size_t sizeAtCeiling = ((size_t*)nextRegionEndPtr)[-1]; | |
if (nextRegion->size != sizeAtCeiling) // Next region is free? | |
{ | |
assert(region_is_free(nextRegion)); | |
uint8_t *newNextRegionStartPtr = (uint8_t*)region + size; | |
assert(HAS_ALIGNMENT(newNextRegionStartPtr, sizeof(size_t))); | |
// Next region does not shrink to too small size? | |
if (newNextRegionStartPtr + sizeof(Region) <= nextRegionEndPtr) | |
{ | |
unlink_from_free_list(nextRegion); | |
create_free_region(newNextRegionStartPtr, nextRegionEndPtr - newNextRegionStartPtr); | |
link_to_free_list((Region*)newNextRegionStartPtr); | |
create_used_region(region, newNextRegionStartPtr - (uint8_t*)region); | |
return 1; | |
} | |
// If we remove the next region altogether, allocation is satisfied? | |
if (newNextRegionStartPtr <= nextRegionEndPtr) | |
{ | |
unlink_from_free_list(nextRegion); | |
create_used_region(region, region->size + nextRegion->size); | |
return 1; | |
} | |
} | |
else | |
{ | |
// Next region is an used region - we cannot change its starting address. However if we are shrinking the | |
// size of this region, we can create a new free region between this and the next used region. | |
if (size + sizeof(Region) <= region->size) | |
{ | |
size_t freeRegionSize = region->size - size; | |
create_used_region(region, size); | |
Region *freeRegion = (Region *)((uint8_t*)region + size); | |
create_free_region(freeRegion, freeRegionSize); | |
link_to_free_list(freeRegion); | |
return 1; | |
} | |
else if (size <= region->size) | |
{ | |
// Caller was asking to shrink the size, but due to not being able to fit a full Region in the shrunk | |
// area, we cannot actually do anything. This occurs if the shrink amount is really small. In such case, | |
// just call it success without doing any work. | |
return 1; | |
} | |
} | |
#ifdef EMMALLOC_VERBOSE | |
// MIKE CHANGE START | |
//MAIN_THREAD_ASYNC_EM_ASM(console.log('attempt_region_resize failed.')); | |
printf("attempt_region_resize failed.\n"); | |
// MIKE CHANGE END | |
#endif | |
return 0; | |
} | |
static int acquire_and_attempt_region_resize(Region *region, size_t size) | |
{ | |
MALLOC_ACQUIRE(); | |
int success = attempt_region_resize(region, size); | |
MALLOC_RELEASE(); | |
return success; | |
} | |
static | |
void *emmalloc_aligned_realloc(void *ptr, size_t alignment, size_t size) | |
{ | |
#ifdef EMMALLOC_VERBOSE | |
// MIKE CHANGE START | |
//MAIN_THREAD_ASYNC_EM_ASM(console.log('aligned_realloc(ptr=0x' + ($0>>>0).toString(16) + ', alignment=' + $1 + ', size=' + ($2>>>0)), ptr, alignment, size); | |
printf("aligned_realloc(ptr=0x%p, alignment=%lu, size=%lu\n", ptr, alignment, size); | |
// MIKE CHANGE END | |
#endif | |
if (!ptr) | |
return emmalloc_memalign(alignment, size); | |
if (size == 0) | |
{ | |
free(ptr); | |
return 0; | |
} | |
if (size > MAX_ALLOC_SIZE) | |
{ | |
#ifdef EMMALLOC_VERBOSE | |
// MIKE CHANGE START | |
//MAIN_THREAD_ASYNC_EM_ASM(console.log('Allocation failed: attempted allocation size is too large: ' + ($0 >>> 0) + 'bytes! (negative integer wraparound?)'), size); | |
printf("Allocation failed: attempted allocation size is too large: %lu bytes! (negative integer wraparound?)\n", size); | |
// MIKE CHANGE END | |
#endif | |
return 0; | |
} | |
assert(IS_POWER_OF_2(alignment)); | |
// aligned_realloc() cannot be used to ask to change the alignment of a pointer. | |
assert(HAS_ALIGNMENT(ptr, alignment)); | |
size = validate_alloc_size(size); | |
// Calculate the region start address of the original allocation | |
Region *region = (Region*)((uint8_t*)ptr - sizeof(size_t)); | |
// First attempt to resize the given region to avoid having to copy memory around | |
if (acquire_and_attempt_region_resize(region, size + REGION_HEADER_SIZE)) | |
{ | |
#ifdef __EMSCRIPTEN_TRACING__ | |
emscripten_trace_record_reallocation(ptr, ptr, size); | |
#endif | |
return ptr; | |
} | |
// If resize failed, we must allocate a new region, copy the data over, and then | |
// free the old region. | |
void *newptr = emmalloc_memalign(alignment, size); | |
if (newptr) | |
{ | |
memcpy(newptr, ptr, MIN(size, region->size - REGION_HEADER_SIZE)); | |
free(ptr); | |
} | |
// N.B. If there is not enough memory, the old memory block should not be freed and | |
// null pointer is returned. | |
return newptr; | |
} | |
#if 0 | |
void * EMMALLOC_EXPORT aligned_realloc(void *ptr, size_t alignment, size_t size) | |
{ | |
return emmalloc_aligned_realloc(ptr, alignment, size); | |
} | |
#endif | |
#if 0 | |
// realloc_try() is like realloc(), but only attempts to try to resize the existing memory | |
// area. If resizing the existing memory area fails, then realloc_try() will return 0 | |
// (the original memory block is not freed or modified). If resizing succeeds, previous | |
// memory contents will be valid up to min(old length, new length) bytes. | |
void *emmalloc_realloc_try(void *ptr, size_t size) | |
{ | |
if (!ptr) | |
return 0; | |
if (size == 0) | |
{ | |
free(ptr); | |
return 0; | |
} | |
if (size > MAX_ALLOC_SIZE) | |
{ | |
#ifdef EMMALLOC_VERBOSE | |
MAIN_THREAD_ASYNC_EM_ASM(console.log('Allocation failed: attempted allocation size is too large: ' + ($0 >>> 0) + 'bytes! (negative integer wraparound?)'), size); | |
#endif | |
return 0; | |
} | |
size = validate_alloc_size(size); | |
// Calculate the region start address of the original allocation | |
Region *region = (Region*)((uint8_t*)ptr - sizeof(size_t)); | |
// Attempt to resize the given region to avoid having to copy memory around | |
int success = acquire_and_attempt_region_resize(region, size + REGION_HEADER_SIZE); | |
#ifdef __EMSCRIPTEN_TRACING__ | |
if (success) | |
emscripten_trace_record_reallocation(ptr, ptr, size); | |
#endif | |
return success ? ptr : 0; | |
} | |
// emmalloc_aligned_realloc_uninitialized() is like aligned_realloc(), but old memory contents | |
// will be undefined after reallocation. (old memory is not preserved in any case) | |
void *emmalloc_aligned_realloc_uninitialized(void *ptr, size_t alignment, size_t size) | |
{ | |
if (!ptr) | |
return emmalloc_memalign(alignment, size); | |
if (size == 0) | |
{ | |
free(ptr); | |
return 0; | |
} | |
if (size > MAX_ALLOC_SIZE) | |
{ | |
#ifdef EMMALLOC_VERBOSE | |
MAIN_THREAD_ASYNC_EM_ASM(console.log('Allocation failed: attempted allocation size is too large: ' + ($0 >>> 0) + 'bytes! (negative integer wraparound?)'), size); | |
#endif | |
return 0; | |
} | |
size = validate_alloc_size(size); | |
// Calculate the region start address of the original allocation | |
Region *region = (Region*)((uint8_t*)ptr - sizeof(size_t)); | |
// First attempt to resize the given region to avoid having to copy memory around | |
if (acquire_and_attempt_region_resize(region, size + REGION_HEADER_SIZE)) | |
{ | |
#ifdef __EMSCRIPTEN_TRACING__ | |
emscripten_trace_record_reallocation(ptr, ptr, size); | |
#endif | |
return ptr; | |
} | |
// If resize failed, drop the old region and allocate a new region. Memory is not | |
// copied over | |
free(ptr); | |
return emmalloc_memalign(alignment, size); | |
} | |
#endif | |
static | |
void *emmalloc_realloc(void *ptr, size_t size) | |
{ | |
return emmalloc_aligned_realloc(ptr, MALLOC_ALIGNMENT, size); | |
} | |
void * EMMALLOC_EXPORT realloc(void *ptr, size_t size) | |
{ | |
return emmalloc_realloc(ptr, size); | |
} | |
#if 0 | |
// realloc_uninitialized() is like realloc(), but old memory contents | |
// will be undefined after reallocation. (old memory is not preserved in any case) | |
void *emmalloc_realloc_uninitialized(void *ptr, size_t size) | |
{ | |
return emmalloc_aligned_realloc_uninitialized(ptr, MALLOC_ALIGNMENT, size); | |
} | |
#endif | |
static | |
int emmalloc_posix_memalign(void **memptr, size_t alignment, size_t size) | |
{ | |
assert(memptr); | |
if (alignment % sizeof(void *) != 0) | |
return 22/* EINVAL*/; | |
*memptr = emmalloc_memalign(alignment, size); | |
return *memptr ? 0 : 12/*ENOMEM*/; | |
} | |
int EMMALLOC_EXPORT posix_memalign(void **memptr, size_t alignment, size_t size) | |
{ | |
return emmalloc_posix_memalign(memptr, alignment, size); | |
} | |
static | |
void *emmalloc_calloc(size_t num, size_t size) | |
{ | |
size_t bytes = num*size; | |
void *ptr = emmalloc_memalign(MALLOC_ALIGNMENT, bytes); | |
if (ptr) | |
memset(ptr, 0, bytes); | |
return ptr; | |
} | |
void * EMMALLOC_EXPORT calloc(size_t num, size_t size) | |
{ | |
return emmalloc_calloc(num, size); | |
} | |
#if 0 | |
static int count_linked_list_size(Region *list) | |
{ | |
int size = 1; | |
for(Region *i = list->next; i != list; list = list->next) | |
++size; | |
return size; | |
} | |
static size_t count_linked_list_space(Region *list) | |
{ | |
size_t space = 0; | |
for(Region *i = list->next; i != list; list = list->next) | |
space += region_payload_end_ptr(i) - region_payload_start_ptr(i); | |
return space; | |
} | |
struct mallinfo emmalloc_mallinfo() | |
{ | |
MALLOC_ACQUIRE(); | |
struct mallinfo info; | |
// Non-mmapped space allocated (bytes): For emmalloc, | |
// let's define this as the difference between heap size and dynamic top end. | |
info.arena = emscripten_get_heap_size() - (size_t)sbrk(0); | |
// Number of "ordinary" blocks. Let's define this as the number of highest | |
// size blocks. (subtract one from each, since there is a sentinel node in each list) | |
info.ordblks = count_linked_list_size(&freeRegionBuckets[NUM_FREE_BUCKETS-1])-1; | |
// Number of free "fastbin" blocks. For emmalloc, define this as the number | |
// of blocks that are not in the largest pristine block. | |
info.smblks = 0; | |
// The total number of bytes in free "fastbin" blocks. | |
info.fsmblks = 0; | |
for(int i = 0; i < NUM_FREE_BUCKETS-1; ++i) | |
{ | |
info.smblks += count_linked_list_size(&freeRegionBuckets[i])-1; | |
info.fsmblks += count_linked_list_space(&freeRegionBuckets[i]); | |
} | |
info.hblks = 0; // Number of mmapped regions: always 0. (no mmap support) | |
info.hblkhd = 0; // Amount of bytes in mmapped regions: always 0. (no mmap support) | |
// Walk through all the heap blocks to report the following data: | |
// The "highwater mark" for allocated space—that is, the maximum amount of | |
// space that was ever allocated. Emmalloc does not want to pay code to | |
// track this, so this is only reported from current allocation data, and | |
// may not be accurate. | |
info.usmblks = 0; | |
info.uordblks = 0; // The total number of bytes used by in-use allocations. | |
info.fordblks = 0; // The total number of bytes in free blocks. | |
// The total amount of releasable free space at the top of the heap. | |
// This is the maximum number of bytes that could ideally be released by malloc_trim(3). | |
Region *lastActualRegion = prev_region((Region*)(listOfAllRegions->endPtr - sizeof(Region))); | |
info.keepcost = region_is_free(lastActualRegion) ? lastActualRegion->size : 0; | |
RootRegion *root = listOfAllRegions; | |
while(root) | |
{ | |
Region *r = (Region*)root; | |
assert(debug_region_is_consistent(r)); | |
uint8_t *lastRegionEnd = root->endPtr; | |
while((uint8_t*)r < lastRegionEnd) | |
{ | |
assert(debug_region_is_consistent(r)); | |
if (region_is_free(r)) | |
{ | |
// Count only the payload of the free block towards free memory. | |
info.fordblks += region_payload_end_ptr(r) - region_payload_start_ptr(r); | |
// But the header data of the free block goes towards used memory. | |
info.uordblks += REGION_HEADER_SIZE; | |
} | |
else | |
{ | |
info.uordblks += r->size; | |
} | |
// Update approximate watermark data | |
info.usmblks = MAX(info.usmblks, (intptr_t)r + r->size); | |
if (r->size == 0) | |
break; | |
r = next_region(r); | |
} | |
root = root->next; | |
} | |
MALLOC_RELEASE(); | |
return info; | |
} | |
struct mallinfo EMMALLOC_EXPORT mallinfo() | |
{ | |
return emmalloc_mallinfo(); | |
} | |
// Note! This function is not fully multithreadin safe: while this function is running, other threads should not be | |
// allowed to call sbrk()! | |
static int trim_dynamic_heap_reservation(size_t pad) | |
{ | |
ASSERT_MALLOC_IS_ACQUIRED(); | |
if (!listOfAllRegions) | |
return 0; // emmalloc is not controlling any dynamic memory at all - cannot release memory. | |
uint8_t *previousSbrkEndAddress = listOfAllRegions->endPtr; | |
assert(sbrk(0) == previousSbrkEndAddress); | |
size_t lastMemoryRegionSize = ((size_t*)previousSbrkEndAddress)[-1]; | |
assert(lastMemoryRegionSize == 16); // // The last memory region should be a sentinel node of exactly 16 bytes in size. | |
Region *endSentinelRegion = (Region*)(previousSbrkEndAddress - sizeof(Region)); | |
Region *lastActualRegion = prev_region(endSentinelRegion); | |
// Round padding up to multiple of 4 bytes to keep sbrk() and memory region alignment intact. | |
// Also have at least 8 bytes of payload so that we can form a full free region. | |
size_t newRegionSize = (size_t)ALIGN_UP(pad, 4); | |
if (pad > 0) | |
newRegionSize += sizeof(Region) - (newRegionSize - pad); | |
if (!region_is_free(lastActualRegion) || lastActualRegion->size <= newRegionSize) | |
return 0; // Last actual region is in use, or caller desired to leave more free memory intact than there is. | |
// This many bytes will be shrunk away. | |
size_t shrinkAmount = lastActualRegion->size - newRegionSize; | |
assert(HAS_ALIGNMENT(shrinkAmount, 4)); | |
unlink_from_free_list(lastActualRegion); | |
// If pad == 0, we should delete the last free region altogether. If pad > 0, | |
// shrink the last free region to the desired size. | |
if (newRegionSize > 0) | |
{ | |
create_free_region(lastActualRegion, newRegionSize); | |
link_to_free_list(lastActualRegion); | |
} | |
// Recreate the sentinel region at the end of the last free region | |
endSentinelRegion = (Region*)((uint8_t*)lastActualRegion + newRegionSize); | |
create_used_region(endSentinelRegion, sizeof(Region)); | |
// And update the size field of the whole region block. | |
listOfAllRegions->endPtr = (uint8_t*)endSentinelRegion + sizeof(Region); | |
// Finally call sbrk() to shrink the memory area. | |
void *oldSbrk = sbrk(-(intptr_t)shrinkAmount); | |
assert((intptr_t)oldSbrk != -1); // Shrinking with sbrk() should never fail. | |
assert(oldSbrk == previousSbrkEndAddress); // Another thread should not have raced to increase sbrk() on us! | |
// All successful, and we actually trimmed memory! | |
return 1; | |
} | |
int emmalloc_trim(size_t pad) | |
{ | |
MALLOC_ACQUIRE(); | |
int success = trim_dynamic_heap_reservation(pad); | |
MALLOC_RELEASE(); | |
return success; | |
} | |
int EMMALLOC_EXPORT malloc_trim(size_t pad) | |
{ | |
return emmalloc_trim(pad); | |
} | |
size_t emmalloc_dynamic_heap_size() | |
{ | |
size_t dynamicHeapSize = 0; | |
MALLOC_ACQUIRE(); | |
RootRegion *root = listOfAllRegions; | |
while(root) | |
{ | |
dynamicHeapSize += root->endPtr - (uint8_t*)root; | |
root = root->next; | |
} | |
MALLOC_RELEASE(); | |
return dynamicHeapSize; | |
} | |
size_t emmalloc_free_dynamic_memory() | |
{ | |
size_t freeDynamicMemory = 0; | |
int bucketIndex = 0; | |
MALLOC_ACQUIRE(); | |
BUCKET_BITMASK_T bucketMask = freeRegionBucketsUsed; | |
// Loop through each bucket that has free regions in it, based on bits set in freeRegionBucketsUsed bitmap. | |
while(bucketMask) | |
{ | |
BUCKET_BITMASK_T indexAdd = __builtin_ctzll(bucketMask); | |
bucketIndex += indexAdd; | |
bucketMask >>= indexAdd; | |
for(Region *freeRegion = freeRegionBuckets[bucketIndex].next; | |
freeRegion != &freeRegionBuckets[bucketIndex]; | |
freeRegion = freeRegion->next) | |
{ | |
freeDynamicMemory += freeRegion->size - REGION_HEADER_SIZE; | |
} | |
++bucketIndex; | |
bucketMask >>= 1; | |
} | |
MALLOC_RELEASE(); | |
return freeDynamicMemory; | |
} | |
size_t emmalloc_compute_free_dynamic_memory_fragmentation_map(size_t freeMemorySizeMap[32]) | |
{ | |
memset((void*)freeMemorySizeMap, 0, sizeof(freeMemorySizeMap[0])*32); | |
size_t numFreeMemoryRegions = 0; | |
int bucketIndex = 0; | |
MALLOC_ACQUIRE(); | |
BUCKET_BITMASK_T bucketMask = freeRegionBucketsUsed; | |
// Loop through each bucket that has free regions in it, based on bits set in freeRegionBucketsUsed bitmap. | |
while(bucketMask) | |
{ | |
BUCKET_BITMASK_T indexAdd = __builtin_ctzll(bucketMask); | |
bucketIndex += indexAdd; | |
bucketMask >>= indexAdd; | |
for(Region *freeRegion = freeRegionBuckets[bucketIndex].next; | |
freeRegion != &freeRegionBuckets[bucketIndex]; | |
freeRegion = freeRegion->next) | |
{ | |
++numFreeMemoryRegions; | |
size_t freeDynamicMemory = freeRegion->size - REGION_HEADER_SIZE; | |
if (freeDynamicMemory > 0) | |
++freeMemorySizeMap[31-__builtin_clz(freeDynamicMemory)]; | |
else | |
++freeMemorySizeMap[0]; | |
} | |
++bucketIndex; | |
bucketMask >>= 1; | |
} | |
MALLOC_RELEASE(); | |
return numFreeMemoryRegions; | |
} | |
size_t emmalloc_unclaimed_heap_memory(void) { | |
return emscripten_get_heap_max() - (size_t)sbrk(0); | |
} | |
#endif | |
// Define these to satisfy musl references. | |
void *__libc_malloc(size_t) __attribute__((alias("malloc"))); | |
void __libc_free(void *) __attribute__((alias("free"))); | |
void *__libc_calloc(size_t nmemb, size_t size) __attribute__((alias("calloc"))); |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment