Created
September 25, 2016 20:09
-
-
Save MikeOuimet/f50904374651c9c15f236aef3109d573 to your computer and use it in GitHub Desktop.
Vanilla policy gradient with tensorflow
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import gym | |
import tensorflow as tf | |
import matplotlib.pyplot as plt | |
def weight_variable(shape): | |
initial = tf.truncated_normal(shape, stddev=0.1) | |
return tf.Variable(initial) | |
def bias_variable(shape): | |
initial = tf.constant(0.2, shape=shape) | |
return tf.Variable(initial) | |
#Initial state and NN | |
env = gym.make('CartPole-v0') | |
env.monitor.start('/tmp/cartpole-experiment-1', force=True) | |
dim = max(np.shape(env.observation_space)) | |
dim_actions = env.action_space.n | |
num_nodes = 100 | |
num_gradients = 1 | |
maxsteps = 1000 | |
num_runs = 1000 | |
sess = tf.InteractiveSession() | |
state = tf.placeholder(tf.float32, shape=[None, dim]) | |
action_choice = tf.placeholder(tf.float32, shape=[None, dim_actions]) | |
reward_signal = tf.placeholder(tf.float32, shape=(None,1) ) | |
n_timesteps = tf.placeholder(tf.float32, shape=()) | |
W1 = weight_variable([dim, num_nodes]) | |
b1 = bias_variable([num_nodes]) | |
a1 = tf.nn.relu(tf.matmul(state, W1) + b1) | |
Wo = weight_variable([num_nodes, dim_actions]) | |
bo = bias_variable([dim_actions]) | |
ao = tf.nn.softmax(tf.matmul(a1, Wo) + bo) | |
log_prob = tf.log(tf.diag_part(tf.matmul(ao, tf.transpose(action_choice))))# fix this so it doesn't need diag | |
log_prob = tf.reshape(log_prob, (1,-1)) | |
loss = tf.matmul(log_prob, reward_signal) | |
loss = -tf.reshape(loss, [-1]) | |
train_step = tf.train.AdamOptimizer().minimize(loss) | |
init = tf.initialize_all_variables() | |
sess = tf.Session() | |
sess.run(init) | |
timestep_learning = np.zeros((num_runs,1)) | |
for run in range(num_runs): | |
states = np.zeros((maxsteps,dim), dtype='float32') | |
actions = np.zeros((maxsteps,dim_actions), dtype='float32') | |
rewards = np.zeros((maxsteps,1), dtype='float32') | |
timestep =0 | |
observation = env.reset() | |
observation = np.reshape(observation,(1,dim)) | |
done = False | |
while not done and timestep < maxsteps: | |
if run % 50 == 0: | |
env.render() | |
action_prob = sess.run(ao, feed_dict={state: observation}) | |
action = np.argmax(np.random.multinomial(1, action_prob[0])) | |
new_observation, reward, done, info = env.step(action) | |
states[timestep, :] = observation | |
actions[timestep, action] = 1 | |
rewards[timestep, :] = reward | |
timestep += 1 | |
observation[:] = new_observation | |
states = states[:timestep, :] | |
actions = actions[:timestep, :] | |
rewards = rewards[:timestep,:] | |
rewards[:, 0] = np.cumsum(rewards[::-1])[::-1] | |
if run % 50 == 0: | |
print 'run #: ', run | |
print 'Time lasted: ', timestep | |
for i in range(num_gradients): | |
sess.run(train_step, feed_dict={state: states, action_choice: actions, reward_signal: rewards, n_timesteps: timestep}) | |
timestep_learning[run] = timestep | |
env.monitor.close() | |
env.render(close=True) | |
plt.plot(timestep_learning) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment