Transforming AgentNexus agents into MCP clients and servers would be a powerful enhancement that enables them to seamlessly collaborate with external MCP-compatible systems. This approach focuses on making your existing agents "MCP-aware" without needing to completely rebuild their internal architecture.
When an AgentNexus agent functions as an MCP server, it can:
- Expose its capabilities to external systems
- Accept requests to perform actions
- Share resources and context
- Execute workflows on behalf of clients
from agentnexus.base_types import AgentConfig
from agentnexus.mcp.server import McpServer, McpServerTransport
class McpEnabledAgent:
def __init__(self, agent_config: AgentConfig):
self.agent_config = agent_config
# Create MCP server for this agent
self.mcp_server = McpServer(
name=agent_config.name,
version=agent_config.version,
capabilities={
# Define capabilities based on agent actions
"tools": self._get_tools_from_actions(),
"resources": self._get_resource_capabilities()
}
)
# Register handlers for MCP requests
self._register_handlers()
def _register_handlers(self):
# Register a handler for each agent action
for action in self.agent_config.actions:
self.mcp_server.set_request_handler(
action.name,
lambda request, extra, action=action: self._execute_action(action, request, extra)
)
async def _execute_action(self, action, request, extra):
"""Execute an agent action in response to MCP request"""
# Convert MCP request to action input
action_input = self._convert_to_action_input(request.params, action)
# Execute the action
result = await action.handler(action_input)
# Convert action result to MCP response
return self._convert_to_mcp_response(result)
def start_server(self, port=9000):
"""Start the MCP server on the specified port"""
transport = McpServerTransport(port=port)
return self.mcp_server.connect(transport)
When an AgentNexus agent functions as an MCP client, it can:
- Discover and connect to external MCP servers
- Request actions from other agents
- Access external resources and contexts
- Incorporate external capabilities into its workflows
from agentnexus.mcp.client import McpClient, McpClientTransport
class McpClientAgent:
def __init__(self, agent_config: AgentConfig):
self.agent_config = agent_config
self.mcp_clients = {} # Map of server_id to client
async def connect_to_server(self, server_url, server_id=None):
"""Connect to an external MCP server"""
client = McpClient()
transport = McpClientTransport(server_url)
# Initialize connection
await client.connect(transport)
# Store client reference
server_id = server_id or server_url
self.mcp_clients[server_id] = client
return client
async def discover_capabilities(self, server_id):
"""Discover capabilities of connected server"""
client = self.mcp_clients.get(server_id)
if not client:
raise ValueError(f"Not connected to server {server_id}")
# Request capabilities
initialize_result = await client.initialize()
return initialize_result.capabilities
async def request_action(self, server_id, action_name, params=None):
"""Request an action from an external MCP server"""
client = self.mcp_clients.get(server_id)
if not client:
raise ValueError(f"Not connected to server {server_id}")
# Send action request
response = await client.send_request({
"method": action_name,
"params": params or {}
})
return response
With MCP support, AgentNexus agents can participate in rich collaborative scenarios with external systems:
Agents can advertise their capabilities through MCP's initialization messages:
# Agent capability advertisement
mcp_capabilities = {
"tools": {
"code-generation": {
"version": "1.0.0",
"languages": ["python", "javascript", "typescript"]
},
"code-analysis": {
"version": "1.0.0",
"analysis_types": ["security", "performance", "quality"]
}
},
"resources": {
"schemes": ["code", "documentation"]
}
}
Other systems can discover these capabilities and decide how to use the agent:
# Discover agent capabilities
client = await McpClient.connect("http://localhost:9000")
initialize_result = await client.initialize()
# Check if agent can generate Python code
python_capable = (
"tools" in initialize_result.capabilities and
"code-generation" in initialize_result.capabilities["tools"] and
"python" in initialize_result.capabilities["tools"]["code-generation"].get("languages", [])
)
Agents can share context with external systems to create a common understanding:
# Create a shared context
context_id = "ctx-code-review-123"
context_data = {
"code": {
"language": "python",
"filename": "main.py",
"content": "def hello():\n print('Hello, world!')"
},
"requirements": {
"performance": True,
"security": True
}
}
# Share context with external system
await agent.mcp_client.send_request({
"method": "createContext",
"params": {
"contextId": context_id,
"data": context_data
}
})
Agents can access resources from external systems:
# Request a resource from external system
resource_response = await agent.mcp_client.send_request({
"method": "getResource",
"params": {
"uri": "documentation://api/reference",
"contextId": context_id
}
})
# Use the resource in the agent
documentation = resource_response.content
Here's how AgentNexus agents could collaborate with external systems for code review:
async def collaborative_code_review(code_content, language):
"""Perform a collaborative code review using internal and external agents"""
# Create shared context
context_id = f"code-review-{uuid.uuid4()}"
context_data = {
"code": {
"language": language,
"content": code_content
}
}
# Initialize our code analysis agent
analysis_agent = await initialize_code_analysis_agent()
# Connect to external security scanning service
security_client = await McpClient.connect("https://security-scanner.example.com")
await security_client.initialize()
# Share context with security scanner
await security_client.send_request({
"method": "createContext",
"params": {
"contextId": context_id,
"data": context_data
}
})
# Request security analysis in parallel with our own analysis
security_task = asyncio.create_task(
security_client.send_request({
"method": "analyzeSecurity",
"params": {
"contextId": context_id,
"options": {
"depth": "thorough",
"includeRemediation": True
}
}
})
)
# Perform our own code quality analysis
quality_analysis = await analysis_agent.analyze_code_quality(
code_content,
language
)
# Wait for security analysis to complete
security_analysis = await security_task
# Combine results
combined_review = {
"quality": quality_analysis,
"security": security_analysis,
"combined_recommendations": merge_recommendations(
quality_analysis.get("recommendations", []),
security_analysis.get("recommendations", [])
)
}
return combined_review
To implement MCP in AgentNexus, you'd need to add these components:
Create core MCP protocol classes:
# agentnexus/mcp/protocol.py
from jsonrpclib import Server
import asyncio
import json
class McpProtocol:
"""Base implementation of MCP protocol handling"""
def __init__(self):
self.request_handlers = {}
self.notification_handlers = {}
self.next_id = 1
async def handle_message(self, message_data):
"""Process an incoming MCP message"""
message = json.loads(message_data)
if "method" in message:
if "id" in message:
# This is a request
return await self._handle_request(message)
else:
# This is a notification
return await self._handle_notification(message)
elif "id" in message:
# This is a response
return await self._handle_response(message)
# Additional protocol methods...
Support different MCP transport mechanisms:
# agentnexus/mcp/transport.py
import asyncio
import aiohttp
from aiohttp import web
from typing import Callable, Awaitable, Dict, Any
class StdioTransport:
"""MCP transport using standard input/output"""
def __init__(self):
self.message_handler = None
async def connect(self, message_handler: Callable[[str], Awaitable[None]]):
"""Connect the transport with a message handler"""
self.message_handler = message_handler
# Set up stdin reader
loop = asyncio.get_event_loop()
reader = asyncio.StreamReader()
protocol = asyncio.StreamReaderProtocol(reader)
await loop.connect_read_pipe(lambda: protocol, sys.stdin)
# Start reading messages
asyncio.create_task(self._read_messages(reader))
async def _read_messages(self, reader):
"""Read messages from stdin"""
while True:
line = await reader.readline()
if not line:
break
if self.message_handler:
await self.message_handler(line.decode('utf-8'))
async def send_message(self, message: str):
"""Send a message over stdout"""
print(message, flush=True)
class HttpSseTransport:
"""MCP transport using HTTP and Server-Sent Events"""
# Implementation for HTTP+SSE transport...
Create adapter classes to make existing agents MCP-compatible:
# agentnexus/mcp/adapters.py
from agentnexus.base_types import AgentConfig, ActionType
from agentnexus.mcp.protocol import McpProtocol
from agentnexus.mcp.transport import StdioTransport, HttpSseTransport
class McpAgentAdapter:
"""Adapter to expose an AgentNexus agent as an MCP server"""
def __init__(self, agent_config: AgentConfig):
self.agent_config = agent_config
self.protocol = McpProtocol()
self.transport = None
# Map agent actions to MCP methods
self._map_actions_to_methods()
def _map_actions_to_methods(self):
"""Register agent actions as MCP methods"""
for action in self.agent_config.actions:
self.protocol.register_method(
action.name,
lambda params, action=action: self._execute_action(action, params)
)
async def _execute_action(self, action, params):
"""Execute an agent action when requested via MCP"""
# Convert MCP params to action input
input_data = self._convert_to_action_input(params, action)
# Execute the action
result = await action.handler(input_data)
# Return the result
return result
async def start(self, transport_type="stdio"):
"""Start the MCP server with the specified transport"""
if transport_type == "stdio":
self.transport = StdioTransport()
elif transport_type == "http":
self.transport = HttpSseTransport()
else:
raise ValueError(f"Unsupported transport type: {transport_type}")
await self.transport.connect(self.protocol.handle_message)
Implementing MCP clients/servers in AgentNexus would offer several key advantages:
-
External Integration: Connect with specialized tools, services, and agents outside your system
-
Standardized Communication: Use a common protocol recognized across the LLM ecosystem
-
Enhanced Capabilities: Access specialized capabilities from external systems when needed
-
Flexible Deployment: Support multiple deployment patterns (local, remote, distributed)
-
Context Preservation: Maintain shared understanding across different systems
-
Progressive Enhancement: Start with basic MCP support and expand as needed
By implementing MCP client/server support in AgentNexus, you would create a framework that not only manages internal agent interactions but can also participate in broader ecosystems of LLM-powered applications. This approach provides immediate value by enabling communication with external specialized systems while paving the way for more advanced multi-agent collaborations in the future.
The most practical first step would be to implement basic MCP client capabilities in AgentNexus, allowing your agents to connect to external MCP servers and leverage their specialized capabilities. From there, you could progressively add server capabilities to expose your agents' functionality to other systems.