Created
September 17, 2019 09:58
-
-
Save Nastaliss/046ad88c7a627f436b0ab7581f4b58b1 to your computer and use it in GitHub Desktop.
Image analysis
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
import copy | |
from copy import deepcopy | |
from functools import reduce | |
import cv2 | |
import numpy as np | |
from matplotlib import pyplot as plt | |
img = cv2.imread('.\Meduse_degrade.jpg',cv2.IMREAD_GRAYSCALE) | |
img_minmax = copy.deepcopy(img) | |
img_egalization = copy.deepcopy(img) | |
img_inversion = copy.deepcopy(img) | |
# ─── TRAITEMENT MINMAX ────────────────────────────────────────────────────────── | |
min_value = np.min(img_minmax) | |
max_value = np.max(img_minmax) | |
for row_index, row in enumerate(img_minmax): | |
for pixel_index, pixel in enumerate(row): | |
img_minmax[row_index][pixel_index] = (255 / (max_value - min_value)) * (pixel - min_value) | |
# ─── TRAITEMENT ÉGALISATION ───────────────────────────────────────────────────── | |
by_intensity = [np.count_nonzero(img == intensity) for intensity in range(0,255)] | |
cumulated = [] | |
for index, intensity_count in enumerate(list(by_intensity)): | |
if index == 0: | |
cumulated.append(intensity_count) | |
else: | |
cumulated.append(intensity_count + cumulated[-1]) | |
total_pixel = img_egalization.size | |
for row_index, row in enumerate(img_egalization): | |
for pixel_index, pixel in enumerate(row): | |
img_egalization[row_index][pixel_index] = 254 / total_pixel * cumulated[pixel] | |
# ─── TRAITEMENT INVERSION ─────────────────────────────────────────────────────── | |
for row_index, row in enumerate(img_inversion): | |
for pixel_index, pixel in enumerate(row): | |
img_inversion[row_index][pixel_index] = 255 - pixel | |
#----------------------------- | |
# Histogramme de l'image | |
plt.subplot(421),plt.imshow(img, cmap = 'gray') | |
plt.title('Original Image'), plt.xticks([]), plt.yticks([]) | |
plt.subplot(422),plt.hist(img.ravel(), bins=256) | |
plt.title('Histogram, min: {} max:{}'.format(np.min(img), np.max(img))), plt.yticks([]) | |
plt.subplot(423),plt.imshow(img_minmax, cmap = 'gray') | |
plt.title('MinMax Image'), plt.xticks([]), plt.yticks([]) | |
plt.subplot(424),plt.hist(img_minmax.ravel(), bins=256) | |
plt.title('Histogram, min: {} max:{}'.format(np.min(img_minmax), np.max(img_minmax))), plt.xticks([]), plt.yticks([]) | |
plt.subplot(425),plt.imshow(img_egalization, cmap = 'gray') | |
plt.title('Egalisataion d\'histogramme'), plt.xticks([]), plt.yticks([]) | |
plt.subplot(426),plt.hist(img_egalization.ravel(), bins=256) | |
plt.title('Histogram, min: {} max:{}'.format(np.min(img_egalization), np.max(img_egalization))), plt.xticks([]), plt.yticks([]) | |
plt.subplot(427),plt.imshow(img_inversion, cmap = 'gray') | |
plt.title('Inversion d\'histogramme'), plt.xticks([]), plt.yticks([]) | |
plt.subplot(428),plt.hist(img_inversion.ravel(), bins=256) | |
plt.title('Histogram, min: {} max:{}'.format(np.min(img_inversion), np.max(img_inversion))), plt.xticks([]), plt.yticks([]) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment