Created
August 10, 2022 07:58
-
-
Save Norod/3495e86e7224031e1dd071af382d0c86 to your computer and use it in GitHub Desktop.
Converting gpt2-large to onnx with multiple external files and using it later for inference
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/python | |
# -*- coding: utf-8 -*- | |
import transformers | |
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModel, AutoConfig | |
from transformers.onnx import FeaturesManager, convert, export | |
from pathlib import Path | |
import os | |
model_id = 'gpt2-large' | |
export_folder = model_id+'-onnx' | |
print('Loading tokenizer...') | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
print('Saving tokenizer to ', export_folder) | |
tokenizer.save_pretrained(export_folder) | |
print('Loading model...') | |
model = AutoModelForCausalLM.from_pretrained(model_id) | |
feature= "causal-lm" | |
model_kind, model_onnx_config = FeaturesManager.check_supported_model_or_raise(model, feature=feature) | |
onnx_config = model_onnx_config(model.config) | |
print("model_kind = {0}\nonx_config = {1}\n".format(model_kind, onnx_config)) | |
onnx_path = Path(export_folder+"/model.onnx") | |
print('Exporting model to ', onnx_path) | |
onnx_inputs, onnx_outputs = export(tokenizer, model, onnx_config, onnx_config.default_onnx_opset, onnx_path) | |
print('Done') |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#Tested with the following Python package versions: | |
#optimum 1.2.3.dev0 | |
#transformers 4.21.0.dev0 | |
#tokenizers 0.11.6 | |
from transformers import AutoTokenizer | |
from optimum.onnxruntime import ORTModelForCausalLM | |
from optimum.pipelines import pipeline | |
model_name="./gpt2-large-onnx" | |
prompt_text = "Hello, my name is" | |
generated_max_length = 42 | |
print("Loading model...") | |
model = ORTModelForCausalLM.from_pretrained(model_name, from_transformers=False) | |
print('Loading Tokenizer...') | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
text_generator = pipeline(task="text-generation", model=model, tokenizer=tokenizer) | |
print("Generating text...") | |
result = text_generator(prompt_text, num_return_sequences=1, batch_size=1, do_sample=True, top_k=40, top_p=0.92, max_length = generated_max_length) | |
print("result = " + str(result)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment