Last active
August 11, 2017 13:12
-
-
Save PeteHaitch/9c973f2b05908f5a065bbaa3de0bbe35 to your computer and use it in GitHub Desktop.
Compare strategies for computing colCounts (number of elements per column equal to a threshold) for a sparse matrix
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(Matrix) | |
library(pryr) | |
library(profmem) | |
library(matrixStats) | |
library(microbenchmark) | |
nrow <- 20000 | |
ncol <- 600 | |
threshold <- 0 | |
matrix <- matrix(runif(nrow * ncol), nrow = nrow, ncol = ncol) | |
zero_idx <- sample(length(matrix), 0.6 * length(matrix)) | |
matrix[zero_idx] <- 0 | |
# 60% zero elements | |
sparse_matrix <- Matrix::Matrix(matrix, sparse = TRUE) | |
all.equal(matrix, as.matrix(sparse_matrix), check.attributes = FALSE) | |
#> [1] TRUE | |
object_size(matrix) | |
#> 96 MB | |
object_size(sparse_matrix) | |
#> 57.6 MB | |
# Measure total memory allocations (not peak memory usage) | |
# (1) Just computing colSums of a matrix/Matrix | |
total(profmem(colSums(matrix))) | |
#> [1] 4840 | |
total(profmem(colSums(sparse_matrix))) | |
#> [1] 4840 | |
# (2) Just finding elements of matrix equal to threshold | |
total(profmem(matrix == threshold)) | |
#> [1] 48000040 | |
total(profmem(sparse_matrix == threshold)) | |
#> [1] 163537608 | |
# (3) Computing number of elements in each column equal to threshold; | |
# conceptually (1) + (2) | |
# (3) == (1) + (2) | |
total(profmem(colSums(matrix == threshold))) | |
#> [1] 48004880 | |
# (3) > (1) + (2) | |
# There's some additional coercion from logical to numeric (I think) | |
total(profmem(colSums(sparse_matrix == threshold))) | |
#> [1] 259260616 | |
# With a matrix we can use the very efficient matrixStats::colCounts(). No matrix | |
# allocation is performed (i.e. (2) is implicit) | |
total(profmem(matrixStats::colCounts(matrix, value = threshold))) | |
#> [1] 37264 | |
# Unfortunately, this doesn't work for Matrix (don't try this, it 'runs' but | |
# with unininted behaviour). | |
# In this example, coercing the Matrix to an ordinary matrix and then using | |
# matrixStats::colCounts() is more efficient (in terms of total | |
# memory allocation) and comparabile in terms of speed to the original approach | |
all.equal(colSums(sparse_matrix == threshold), | |
matrixStats::colCounts(as.matrix(sparse_matrix), | |
value = threshold)) | |
#> [1] TRUE | |
total(profmem(colSums(sparse_matrix == threshold))) | |
#> [1] 259206240 | |
total(profmem(matrixStats::colCounts(as.matrix(sparse_matrix), | |
value = threshold))) | |
#> [1] 96002480 | |
microbenchmark(colSums(sparse_matrix == threshold), | |
matrixStats::colCounts(as.matrix(sparse_matrix), | |
value = threshold), | |
times = 100) | |
#> Unit: milliseconds | |
#> expr | |
#> colSums(sparse_matrix == threshold) | |
#> matrixStats::colCounts(as.matrix(sparse_matrix), value = threshold) | |
#> min lq mean median uq max neval | |
#> 153.9220 226.9063 270.3231 252.1848 289.6850 610.2432 100 | |
#> 161.3339 202.5328 252.2943 230.5502 272.9558 583.8499 100 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment