-
-
Save Piliponful/76b595b14937775e7d6cefb6624b318c to your computer and use it in GitHub Desktop.
Implementation of `Dijkstra's algorithm` in JavaScript
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
var graph1 = { | |
vertex: ["1","2","3"], | |
edge: [, | |
/* vertex1, vertex2, weight */ | |
["1", "2", 4], | |
["1", "3", 7], | |
["2", "3", 1] | |
] | |
}, | |
graph2 = { | |
vertex: ["1","2","3","4","5","6"], | |
edge: [, | |
/* vertex1, vertex2, weight */ | |
["1", "2", 7], | |
["1", "3", 9], | |
["1", "6", 14], | |
["2", "3", 10], | |
["2", "4", 15], | |
["3", "4", 11], | |
["3", "6", 2], | |
["4", "5", 6], | |
["5", "6", 9] | |
] | |
}; | |
function dijkstra(start, graph) { | |
var distance = {}, | |
prev = {}, | |
vertices = {}, | |
u; | |
// Setup distance sentinel | |
graph.vertex.forEach(function(v_i) { | |
distance[v_i] = Infinity; | |
prev[v_i] = null; | |
vertices[v_i] = true; | |
}); | |
distance[start] = 0; | |
while (Object.keys(vertices).length > 0) { | |
// Obtain a vertex whose distaance is minimum. | |
u = Object.keys(vertices).reduce(function(prev, v_i) { | |
return distance[prev] > distance[v_i] ? +v_i : prev; | |
}, Object.keys(vertices)[0]); | |
graph.edge.filter(function(edge) { | |
var from = edge[0], | |
to = edge[1]; | |
return from===u || to===u; | |
}) | |
.forEach(function(edge) { | |
var to = edge[1]===u ? edge[0] : edge[1], | |
dist = distance[u] + edge[2]; | |
if (distance[to] > dist) { | |
distance[to] = dist; | |
prev[to] = u; | |
} | |
}); | |
// Mark visited | |
delete vertices[u]; | |
} | |
return distance; | |
}; | |
console.log(dijkstra("1", graph2)); |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment