Created
July 9, 2013 13:04
-
-
Save PirateGrunt/5957158 to your computer and use it in GitHub Desktop.
Another view of ordinary regression
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Get a set of "error" terms | |
set.seed(1234) | |
N = 100 | |
E = rnorm(N, mean = 0, sd = 2) | |
lnLike = function(x, mu, sigma) | |
{ | |
n = length(x) | |
lnLike = -n / 2 * log(2*pi) | |
lnLike = lnLike - n/2 * log(sigma ^2) | |
lnLike = lnLike - 1/(2*sigma^2)*sum((x - mu)^2) | |
lnLike | |
} | |
# for a fixed sd, plot the likelihood function for various mu's | |
testMu = -50:50 / 100 | |
likelihood = numeric(length(testMu)) | |
for (i in 1:length(likelihood)){ | |
likelihood[i] = lnLike(e, testMu[i], 1) | |
} | |
plot(likelihood ~ testMu, pch = 19) | |
abline(v = 0) | |
abline(v = testMu[likelihood == max(likelihood)]) | |
testMu[likelihood == max(likelihood)] | |
# for a fixed mu, plot the likelihood function for various sigma's | |
testSigma = 50:150 / 100 | |
likelihood = numeric(length(testSigma)) | |
for (i in 1:length(testSigma)){ | |
likelihood[i] = lnLike(e, 0, testSigma[i]) | |
} | |
plot(likelihood ~ testSigma, pch = 19) | |
abline(v = 1) | |
abline(v = testSigma[likelihood == max(likelihood)]) | |
testSigma[likelihood == max(likelihood)] | |
# Now plot the 2-dimensional case | |
params = expand.grid(mu = testMu, sigma = testSigma) | |
params$Likelihood = mapply(lnLike, params$mu, params$sigma, MoreArgs = list(x = e)) | |
z = matrix(params$Likelihood, length(testMu), length(testSigma)) | |
filled.contour(x=testMu, y=testSigma, z=z, color.palette = heat.colors, xlab = "mu", ylab = "sigma") | |
# Now we'll optimize the likelihood | |
lnLike2 = function(x, par) | |
{ | |
mu = par[1] | |
sigma = par[2] | |
lnLike(x, mu, sigma) | |
} | |
optim(par = c(-1,4), fn = lnLike2, control = list(fnscale = -1), x = e) | |
# Note that the sigma doesn't correspond to the maximum in our univariate illustration earlier | |
# because that assumed that mu = 0 | |
optimize(interval = c(0.00001,5), f = lnLike, maximum = TRUE, x = e, mu = 0) | |
# Now things are consistent. | |
B0 = 5 | |
Y = B0 + e | |
optim(par = c(-1,4), fn = lnLike2, control = list(fnscale = -1), x = Y) | |
fit = lm(Y ~ 1) | |
fit$coefficients[[1]] | |
X = as.double(1:length(E)) | |
B1 = 1.5 | |
Y = B0 + B1 * X + E | |
lnLike3 = function(par, Y, X) | |
{ | |
B0 = par[1] | |
B1 = par[2] | |
sigma = par[3] | |
x = Y - B0 - B1 * X | |
mu = 0 | |
lnLike(x, mu, sigma) | |
} | |
optim(par = c(3, 2, 4), fn = lnLike3, control = list(fnscale = -1), Y = Y, X = X) | |
fit = lm(Y ~ 1 + X) | |
fit$coefficients |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment