Created
January 18, 2025 14:48
-
-
Save Rauf-Kurbanov/9cb7a9f96819c58624f0799ea8f3078b to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import streamlit as st | |
import numpy as np | |
import pandas as pd | |
import plotly.express as px | |
import plotly.graph_objects as go | |
# Set page title | |
st.title('Product Metrics vs Price Demo') | |
# Generate random data | |
np.random.seed(42) | |
n_points = 30 | |
prices = np.linspace(1, 30, n_points) | |
engagement = 50 + 30*np.random.randn(n_points) - prices*0.3 + np.random.randn(n_points)*10 | |
satisfaction = 80 + 20*np.random.randn(n_points) - prices*0.4 + np.random.randn(n_points)*8 | |
retention = 70 + 25*np.random.randn(n_points) - prices*0.35 + np.random.randn(n_points)*12 | |
# Create dataframe | |
df = pd.DataFrame({ | |
'Price (USD)': prices, | |
'Engagement Score': engagement, | |
'Satisfaction Score': satisfaction, | |
'Retention Rate': retention | |
}) | |
# Add price slider | |
selected_price = st.slider('Select Price Point (USD)', min_value=1.0, max_value=30.0, value=15.0) | |
# Create vertical line data | |
vline_data = dict( | |
type='line', | |
x0=selected_price, | |
x1=selected_price, | |
yref='paper', | |
y0=0, | |
y1=1, | |
line=dict(color='red', dash='dash') | |
) | |
# Create combined plot | |
fig = go.Figure() | |
# Add traces for each metric | |
fig.add_trace(go.Scatter( | |
x=df['Price (USD)'], | |
y=df['Engagement Score'], | |
mode='lines+markers', | |
name='Engagement Score' | |
)) | |
fig.add_trace(go.Scatter( | |
x=df['Price (USD)'], | |
y=df['Satisfaction Score'], | |
mode='lines+markers', | |
name='Satisfaction Score' | |
)) | |
fig.add_trace(go.Scatter( | |
x=df['Price (USD)'], | |
y=df['Retention Rate'], | |
mode='lines+markers', | |
name='Retention Rate' | |
)) | |
# Add vertical line | |
fig.add_shape(vline_data) | |
# Update layout | |
fig.update_layout( | |
title='Product Metrics vs Price', | |
xaxis_title='Price (USD)', | |
yaxis_title='Score/Rate', | |
template='plotly_white' | |
) | |
# Display plot | |
st.plotly_chart(fig, use_container_width=True) | |
# Add explanation | |
st.markdown(""" | |
This demo shows simulated relationships between product price and key metrics: | |
- Each point represents a product | |
- The lines show the relationships between price and metrics | |
- Notice how all metrics tend to decrease as price increases | |
- There's some random variation to simulate real-world noise | |
- The red dashed line shows your selected price point across all metrics | |
""") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment