Created
July 22, 2021 20:12
-
-
Save ResidentMario/16525c985fa3aaf9943bcfae0d3e0022 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# import torch | |
from torch.utils.data import Dataset, DataLoader | |
import torchvision | |
import pandas as pd | |
from PIL import Image | |
import time | |
import argparse | |
class TestDataset(Dataset): | |
def __init__(self): | |
super().__init__() | |
self.train_folders = [ | |
"/mnt/resized train 15/", | |
"/mnt/resized train 19/" | |
] | |
self.labels = [ | |
pd.read_csv("/mnt/labels/trainLabels15.csv"), | |
pd.read_csv("/mnt/labels/trainLabels19.csv"), | |
] | |
self.dir_breakpoint_idx = len(self.labels[0]) | |
self.transform = torchvision.transforms.Compose([ | |
torchvision.transforms.Resize((1024, 1024)), | |
torchvision.transforms.RandomHorizontalFlip(), | |
torchvision.transforms.RandomPerspective(), | |
torchvision.transforms.ToTensor() | |
]) | |
def __len__(self): | |
return sum(len(labelset) for labelset in self.labels) | |
def __getitem__(self, i): | |
if i >= self.dir_breakpoint_idx: | |
i = i % self.dir_breakpoint_idx | |
labelset = self.labels[1] | |
train_folder = self.train_folders[1] | |
else: | |
labelset = self.labels[0] | |
train_folder = self.train_folders[0] | |
filename = f"{labelset.iloc[i, 0]}.jpg" | |
filepath = f"{train_folder}{filename}" | |
img = Image.open(filepath) | |
return self.transform(img) | |
def get_dataset(): | |
return TestDataset() | |
def get_dataloader(dataset, batch_size, num_workers): | |
# num_workers controls multiprocessing concurrency | |
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers) | |
return dataloader | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--batch-size", type=int, help="Number of images per batch") | |
parser.add_argument("--num-workers", type=int, help="Number of multiprocessed workers to used for loading data") | |
parser.add_argument("--sleep", type=float, help="Amount of time to sleep (in seconds) between disk reads") | |
args = parser.parse_args() | |
dataset = get_dataset() | |
dataloader = get_dataloader(dataset, args.batch_size, args.num_workers) | |
while True: | |
for i, batch in enumerate(dataloader): | |
# do nothing, just read from disk | |
time.sleep(args.sleep) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment