Last active
October 28, 2020 14:51
-
-
Save Rhyssmcm/13e8a524507a287c6bbe82ecc933bfca to your computer and use it in GitHub Desktop.
(Q1.1) Plot the trajectory of the vehicle on the X-Y plane
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from scipy.integrate import solve_ivp | |
import matplotlib.pyplot as plt | |
class PidController: | |
"""PidController | |
Documentation goes here | |
""" | |
def __init__(self, kp, ki, kd, ts): | |
"""Documentation goes here | |
:param kp: proportional gain | |
:param ki: integral gain | |
:param kd: | |
:param ts: | |
""" | |
self.__kp = kp | |
self.__kd = kd / ts # discrete-time Kd | |
self.__ki = ki * ts | |
self.__previous_error = None | |
self.__error_sum = 0. | |
def control(self, y, set_point=2.3): | |
"""Documentation goes here | |
:param y: | |
:param set_point: | |
:return: | |
""" | |
error = set_point - y # compute the control error | |
steering_action = self.__kp * error # P controller | |
# D component: | |
if self.__previous_error is not None: | |
error_diff = error - self.__previous_error | |
steering_action += self.__kd * error_diff | |
# I component: | |
# TODO: Do this as an exercise. Introduce the I component | |
# here (don't forget to update the sum of errors). | |
self.__previous_error = error | |
return steering_action | |
class Car: | |
def __init__(self, | |
length=2.3, | |
velocity=1, | |
x_pos_init=0, y_pos_init=0, pose_init=(5*(np.pi)/(180))): | |
self.__length = length | |
self.__velocity = velocity | |
self.__x = x_pos_init | |
self.__y = y_pos_init | |
self.__pose = pose_init | |
def move(self, steering_angle, dt): | |
# This method computes the position and orientation (pose) | |
# of the car after time `dt` starting from its current | |
# position and orientation by solving an IVP | |
def bicycle_model(_t, z): | |
x = z[0] | |
y = z[1] | |
theta = z[2] | |
return [self.__velocity * np.cos(theta), | |
self.__velocity * np.sin(theta), | |
self.__velocity * np.tan(steering_angle) | |
/ self.__length] | |
sol = solve_ivp(bicycle_model, | |
[0, dt], | |
[self.__x, self.__y, self.__pose]) | |
self.__x = sol.y[0, -1] | |
self.__y = sol.y[1, -1] | |
self.__pose = sol.y[2, -1] | |
def y(self): | |
return self.__y | |
def x(self): | |
return self.__x | |
def pose(self): | |
return self.__pose | |
t_sampling = 0.01 | |
car = Car(y_pos_init=0.3, velocity=5) | |
pid = PidController(kp=-(np.pi)/180, kd=0.00, ki=0.0, ts=t_sampling) | |
n_sim_points = 200 | |
y_cache = np.array([car.y()], dtype=float) | |
x_cache = np.array([car.x()], dtype=float) | |
pose_cache = np.array([car.pose()], dtype=float) | |
for i in range(n_sim_points): | |
u = pid.control(car.y()) | |
car.move(u, t_sampling) | |
y_cache = np.append(y_cache, car.y()) | |
x_cache = np.append(x_cache, car.x()) | |
pose_cache = np.append(pose_cache, car.pose()) | |
t_span = t_sampling * np.arange(n_sim_points + 1) | |
plt.plot(x_cache,y_cache) | |
plt.grid() | |
plt.xlabel('X(t) (m)') | |
plt.ylabel('Y(t) (m)') | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment