Last active
November 19, 2020 20:03
-
-
Save Rhyssmcm/5255fefd5ff0944f8ab1d04de343f888 to your computer and use it in GitHub Desktop.
(Q4)The following parameters are given: M = 0.3 kg, (5.3a) m = 0.1 kg, (5.3b) ` = 35 cm, (5.3c) g = 9.81 m/s 2 . (5.3d) Suppose that the inverted pendulum is initially at rest at the upright position. Simulate the trajectories of θ(t) and x(t) upon the action of the force F(t) = sin(100t 2 ). (5.4) Simulate over t ∈ [0, 0.2]s.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import sympy as sym | |
import numpy as np | |
import control as ctrl | |
import matplotlib.pyplot as p | |
m, ell, x3, x4, M, g, F, m = sym.symbols('m, ell, x3, x4, M, g, F, m') | |
phi = 4*m*ell*x4**2*sym.sin(x3) + 4*F - 3*m*g*sym.sin(x3)*sym.cos(x3) | |
phi /= 4*(M+m) - 3*m*sym.cos(x3)**2 | |
dphi_x3 = phi.diff(x3) | |
dphi_x4 = phi.diff(x4) | |
dphi_F = phi.diff(F) | |
psi = -3*(m*ell*x4**2*sym.sin(x3)*sym.cos(x3) + F*sym.cos(x3) - (M+m)*g*sym.sin(x3)) | |
psi /= (4*(M+m) - 3*m*sym.cos(x3)**2)*ell | |
dpsi_x3 = psi.diff(x3) | |
dpsi_x4 = psi.diff(x4) | |
dpsi_F = psi.diff(F) | |
# Equilibrium point | |
Feq = 0 | |
x3eq = 0 | |
x4eq = 0 | |
#------------------------------ | |
# adding equilibrium to x1 and x2 | |
#------------------------------ | |
x1eq = 0 | |
x2eq = 0 | |
dphi_F_eq = dphi_F.subs([(F, Feq), (x3, x3eq), (x4, x4eq)]) | |
dphi_x3_eq = dphi_x3.subs([(F, Feq), (x3, x3eq), (x4, x4eq)]) | |
dphi_x4_eq = dphi_x4.subs([(F, Feq), (x3, x3eq), (x4, x4eq)]) | |
dpsi_F_eq = dpsi_F.subs([(F, Feq), (x3, x3eq), (x4, x4eq)]) | |
dpsi_x3_eq = dpsi_x3.subs([(F, Feq), (x3, x3eq), (x4, x4eq)]) | |
dpsi_x4_eq = dpsi_x4.subs([(F, Feq), (x3, x3eq), (x4, x4eq)]) | |
a = dphi_F_eq | |
b = -dphi_x3_eq | |
c = 3/(ell*(4*M + m)) | |
d = 3*(M+m)*g/(ell*(4*M + m)) | |
# GIVEN VALUES! | |
def evaluate_at_given_parameters(z): | |
M_value = 0.3 | |
m_value = 0.1 | |
g_value = 9.81 | |
ell_value = 0.35 | |
return float(z.subs([(M, M_value), (m, m_value), (ell, ell_value), (g, g_value)])) | |
a_value = evaluate_at_given_parameters(a) | |
b_value = evaluate_at_given_parameters(b) | |
c_value = evaluate_at_given_parameters(c) | |
d_value = evaluate_at_given_parameters(d) | |
# ----------------------------------- | |
# Control library of Python | |
# ----------------------------------- | |
a, b, c, d = sym.symbols('a:d', real=True, positive=True) | |
s, t = sym.symbols('s, t') | |
transfer_function_F_to_x3 = -c/(s**2 - d) | |
transfer_function_F_to_x1 = (a*(s**2 - d) + b*c)/(s**2)*(s**2-d) | |
n_points = 500 | |
t_final = 0.2 | |
t_span = np.linspace(0, t_final, n_points) | |
input_signal = np.sin(100*(t_span**2)) | |
transfer_function_F2x3 = ctrl.TransferFunction([-c_value], [1, 0, -d_value]) | |
transfer_function_F2x1 = ctrl.TransferFunction([a_value, 0, (-a_value*d_value) + (b_value*c_value)], [1, 0, -d_value, 0, 0]) | |
tf_out1, t_out1, Ft_out1= ctrl.forced_response(transfer_function_F2x3, t_span, input_signal) | |
tf_out2, t_out2, Ft_out2= ctrl.forced_response(transfer_function_F2x1, t_span, input_signal) | |
plt.plot(tf_out1, t_out1) | |
plt.xlabel('Time (s)') | |
plt.ylabel('Angle (rad)') | |
plt.grid() | |
plt.savefig("Question4Angle(rads)AgainstTime.eps", format = "eps") | |
plt.show() | |
plt.plot(tf_out2, t_out2) | |
plt.xlabel('Time (s)') | |
plt.ylabel('Horizontal Position (m)') | |
plt.grid() | |
plt.savefig("Question4HorizontalPosistionAgainstTime.eps", format = "eps") | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment