Created
November 16, 2020 17:21
-
-
Save Rhyssmcm/8f773f61563fd26c72ee3e23d24b1217 to your computer and use it in GitHub Desktop.
(Q2)Derive the transfer function Gθ(s) using the force, F(s), as an input variable and the angle, X3(s), as the output variable. Derive the transfer function Gx(s) using the force, F(s), as an input variable and the horizontal position, X1(s).
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import sympy as sym | |
m, ell, x1, x2, x3, x4, M, g, F, m = sym.symbols('m, ell, x1, x2, x3, x4, M, g, F, m') | |
# φ(F, x3, x4) | |
phi = 4*m*ell*x4**2*sym.sin(x3) + 4*F - 3*m*g*sym.sin(x3)*sym.cos(x3) | |
phi /= 4*(M+m) - 3*m*sym.cos(x3)**2 | |
dphi_x3 = phi.diff(x3) | |
dphi_x4 = phi.diff(x4) | |
dphi_F = phi.diff(F) | |
psi = -3*(m*ell*x4**2*sym.sin(x3)*sym.cos(x3) + F*sym.cos(x3) - (M+m)*g*sym.sin(x3)) | |
psi /= (4*(M+m) - 3*m*sym.cos(x3)**2)*ell | |
dpsi_x3 = psi.diff(x3) | |
dpsi_x4 = psi.diff(x4) | |
dpsi_F = psi.diff(F) | |
# Equilibrium point | |
Feq = 0 | |
x3eq = 0 | |
x4eq = 0 | |
#------------------------------ | |
# adding equilibrium to x1 and x2 | |
#------------------------------ | |
x1eq = 0 | |
x2eq = 0 | |
dphi_F_eq = dphi_F.subs([(F, Feq), (x3, x3eq), (x4, x4eq)]) | |
dphi_x3_eq = dphi_x3.subs([(F, Feq), (x3, x3eq), (x4, x4eq)]) | |
dphi_x4_eq = dphi_x4.subs([(F, Feq), (x3, x3eq), (x4, x4eq)]) | |
dpsi_F_eq = dpsi_F.subs([(F, Feq), (x3, x3eq), (x4, x4eq)]) | |
dpsi_x3_eq = dpsi_x3.subs([(F, Feq), (x3, x3eq), (x4, x4eq)]) | |
dpsi_x4_eq = dpsi_x4.subs([(F, Feq), (x3, x3eq), (x4, x4eq)]) | |
#Definitions of positive real constants | |
a = dphi_F_eq | |
b = -dphi_x3_eq | |
c = 3/(ell*(4*M + m)) | |
d = 3*(M+m)*g/(ell*(4*M + m)) | |
# --------------------------------------------------------------------- | |
a, b, c, d = sym.symbols('a:d') | |
s, t = sym.symbols('s, t') | |
#Derived Transfer fucntions | |
transfer_function_F_to_x3 = -c/(s**2 - d) | |
transfer_function_F_to_x1 = (a*(s**2 - d) + b*c)/(s**2)*(s**2-d) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment