Last active
November 19, 2020 20:01
-
-
Save Rhyssmcm/cb1b9aacaea6b1b71a20fdac4db7c17c to your computer and use it in GitHub Desktop.
(Q5) Suppose that the inverted pendulum is initially at equilibrium. Its parameters are given in (5.3). A unit impulse is applied to the system at t = 0. Choose the parameters of a PID controller so that the angle θ remains with [−5 ◦ , 5 ◦ ] and θ is below 0.1 ◦ after 0.4 s.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import sympy as sym | |
import control as ctrl | |
import numpy as np | |
import matplotlib.pyplot as plt | |
m, ell, x3, x4, M, g, F, m = sym.symbols('m, ell, x3, x4, M, g, F, m') | |
# φ(F, x3, x4) | |
phi = 4*m*ell*x4**2*sym.sin(x3) + 4*F - 3*m*g*sym.sin(x3)*sym.cos(x3) | |
phi /= 4*(M+m) - 3*m*sym.cos(x3)**2 | |
dphi_x3 = phi.diff(x3) | |
dphi_x4 = phi.diff(x4) | |
dphi_F = phi.diff(F) | |
psi = -3*(m*ell*x4**2*sym.sin(x3)*sym.cos(x3) + F*sym.cos(x3) - (M+m)*g*sym.sin(x3)) | |
psi /= (4*(M+m) - 3*m*sym.cos(x3)**2)*ell | |
dpsi_x3 = psi.diff(x3) | |
dpsi_x4 = psi.diff(x4) | |
dpsi_F = psi.diff(F) | |
# Equilibrium point | |
Feq = 0 | |
x3eq = 0 | |
x4eq = 0 | |
dphi_F_eq = dphi_F.subs([(F, Feq), (x3, x3eq), (x4, x4eq)]) | |
dphi_x3_eq = dphi_x3.subs([(F, Feq), (x3, x3eq), (x4, x4eq)]) | |
dphi_x4_eq = dphi_x4.subs([(F, Feq), (x3, x3eq), (x4, x4eq)]) | |
dpsi_F_eq = dpsi_F.subs([(F, Feq), (x3, x3eq), (x4, x4eq)]) | |
dpsi_x3_eq = dpsi_x3.subs([(F, Feq), (x3, x3eq), (x4, x4eq)]) | |
dpsi_x4_eq = dpsi_x4.subs([(F, Feq), (x3, x3eq), (x4, x4eq)]) | |
a = dphi_F_eq | |
b = -dphi_x3_eq | |
c = 3/(ell*(4*M + m)) | |
d = 3*(M+m)*g/(ell*(4*M + m)) | |
# GIVEN VALUES! | |
def evaluate_at_given_parameters(z): | |
M_value = 0.3 | |
m_value = 0.1 | |
g_value = 9.81 | |
ell_value = 0.35 | |
return float(z.subs([(M, M_value), (m, m_value), (ell, ell_value), (g, g_value)])) | |
a_value = evaluate_at_given_parameters(a) | |
b_value = evaluate_at_given_parameters(b) | |
c_value = evaluate_at_given_parameters(c) | |
d_value = evaluate_at_given_parameters(d) | |
# ----------------------------------- | |
# Control library of Python | |
# ----------------------------------- | |
transfer_function_F2x3=ctrl.TransferFunction([-c_value],[1,0,-d_value]) | |
def pid(Kp, Ki, Kd): | |
Gc = ctrl.TransferFunction([Kp], [1]) | |
Gc += ctrl.TransferFunction([Kd, 0], [1]) | |
Gc += ctrl.TransferFunction([Ki], [1, 0]) | |
return Gc | |
n_points = 500 | |
t_final = 1 | |
t_span = np.linspace(0, t_final, n_points) | |
transfer_function_pid = \ | |
-pid(Kp=200, Ki=0.2, Kd=8) | |
overall_tf = \ | |
ctrl.feedback(transfer_function_F2x3,transfer_function_pid) | |
t_imp, x3_imp = \ | |
ctrl.impulse_response(overall_tf, t_span) | |
angle_imp = \ | |
(x3_imp*(180/np.pi)) | |
plt.plot(t_imp, angle_imp) | |
plt.xlabel('Time (s)') | |
plt.ylabel('Angle (degrees)') | |
plt.grid() | |
plt.savefig("Question5Angle(degrees)AgainstTime") | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment