Last active
November 19, 2020 20:04
-
-
Save Rhyssmcm/f5fccd8ab886bbd9f2c76fe7cbe01372 to your computer and use it in GitHub Desktop.
(Q3)Use sympy to determine closed-form (symbolic) expressions for the impulse, step and frequency response of Gθ and Gx
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import sympy as sym | |
m, ell, x1, x2, x3, x4, M, g, F = sym.symbols('m, ell, x1, x2, x3, x4, M, g, F') | |
# φ(F, x3, x4) | |
phi = 4*m*ell*x4**2*sym.sin(x3) + 4*F - 3*m*g*sym.sin(x3)*sym.cos(x3) | |
phi /= 4*(M+m) - 3*m*sym.cos(x3)**2 | |
dphi_x3 = phi.diff(x3) | |
dphi_x4 = phi.diff(x4) | |
dphi_F = phi.diff(F) | |
psi = -3*(m*ell*x4**2*sym.sin(x3)*sym.cos(x3) + F*sym.cos(x3) - (M+m)*g*sym.sin(x3)) | |
psi /= (4*(M+m) - 3*m*sym.cos(x3)**2)*ell | |
dpsi_x3 = psi.diff(x3) | |
dpsi_x4 = psi.diff(x4) | |
dpsi_F = psi.diff(F) | |
# Equilibrium point | |
Feq = 0 | |
x3eq = 0 | |
x4eq = 0 | |
#------------------------------ | |
# adding equilibrium to x1 and x2 | |
#------------------------------ | |
x1eq = 0 | |
x2eq = 0 | |
dphi_F_eq = dphi_F.subs([(F, Feq), (x3, x3eq), (x4, x4eq)]) | |
dphi_x3_eq = dphi_x3.subs([(F, Feq), (x3, x3eq), (x4, x4eq)]) | |
dphi_x4_eq = dphi_x4.subs([(F, Feq), (x3, x3eq), (x4, x4eq)]) | |
dpsi_F_eq = dpsi_F.subs([(F, Feq), (x3, x3eq), (x4, x4eq)]) | |
dpsi_x3_eq = dpsi_x3.subs([(F, Feq), (x3, x3eq), (x4, x4eq)]) | |
dpsi_x4_eq = dpsi_x4.subs([(F, Feq), (x3, x3eq), (x4, x4eq)]) | |
a = dphi_F_eq | |
b = -dphi_x3_eq | |
c = -dpsi_F_eq | |
d = dpsi_x3_eq | |
# ----------------------- | |
a, b, c, d = sym.symbols('a:d', real=True, positive=True) | |
s, t = sym.symbols('s, t') | |
transfer_function_F_to_x3 = -c/(s**2 - d) | |
transfer_function_F_to_x1 = ((a*s**2) - (a*d) + (b*c))/(s**4 - (d * s**2)) | |
#impulse Response(kick) | |
Xs_impulse = 1 | |
#G_theta response | |
x3t_impulse = sym.inverse_laplace_transform(transfer_function_F_to_x3 * Xs_impulse, s, t) | |
sym.pprint(x3t_impulse.simplify()) | |
#G_x response | |
x1t_impulse = sym.inverse_laplace_transform(transfer_function_F_to_x1 * Xs_impulse, s, t) | |
sym.pprint(x1t_impulse.simplify()) | |
#Step Response(Push) | |
Xs_step = 1/s | |
#G_theta response | |
x3t_step = sym.inverse_laplace_transform(transfer_function_F_to_x3 * Xs_step, s, t) | |
sym.pprint(x3t_step.simplify()) | |
#G_x response | |
x1t_step = sym.inverse_laplace_transform(transfer_function_F_to_x1 * Xs_step, s, t) | |
sym.pprint(x1t_step.simplify()) | |
#Frequency Response(shake) | |
w = sym.symbols('w', real=True) | |
Xs_shake = w/(s**2 + w**2) | |
#G_theta response | |
x3t_shake = sym.inverse_laplace_transform(transfer_function_F_to_x3 * Xs_shake, s, t, w) | |
sym.pprint(x3t_shake.simplify()) | |
#G_x response | |
x1t_shake = sym.inverse_laplace_transform(transfer_function_F_to_x1 * Xs_shake, s, t, w) | |
sym.pprint(x1t_shake.simplify()) | |
print(sym.latex(x3t_impulse.simplify())) | |
print(sym.latex(x1t_impulse.simplify())) | |
print(sym.latex(x3t_step.simplify())) | |
print(sym.latex(x1t_step.simplify())) | |
print(sym.latex(x3t_shake.simplify())) | |
print(sym.latex(x1t_shake.simplify())) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment