Created
April 2, 2022 02:45
-
-
Save RobMulla/f04b144bb766b692f9314e3782d724d3 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
import numpy as np | |
def get_dataset(size): | |
df = pd.DataFrame() | |
df['position'] = np.random.choice(['left','middle','right'], size) | |
df['age'] = np.random.randint(1, 50, size) | |
df['team'] = np.random.choice(['red','blue','yellow','green'], size) | |
df['win'] = np.random.choice(['yes','no'], size) | |
df['prob'] = np.random.uniform(0, 1, size) | |
return df | |
def set_dtypes(df): | |
df['position'] = df['position'].astype('category') | |
df['team'] = df['team'].astype('category') | |
df['age'] = df['age'].astype('int8') | |
df['prob'] = df['prob'].astype('float32') | |
df['win'] = df['win'].map({'yes':True, 'no':False}) | |
return df | |
df = get_dataset(1_000_000) | |
%timeit df['age_rank'] = df.groupby(['team','position'])['age'].rank() | |
%timeit df['prob_rank'] = df.groupby(['team','position'])['prob'].rank() | |
%timeit df['win_prob_rank'] = df.groupby(['team','position','win'])['prob'].rank() | |
df = get_dataset(1_000_000) | |
df = set_dtypes(df) | |
%timeit df['age_rank'] = df.groupby(['team','position'])['age'].rank() | |
%timeit df['prob_rank'] = df.groupby(['team','position'])['prob'].rank() | |
%timeit df['win_prob_rank'] = df.groupby(['team','position','win'])['prob'].rank() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment