Last active
August 15, 2023 03:55
-
-
Save RyanGreenup/07c9c281142721356a937ed53bcc0bb0 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
## Write in the data | |
o <- rbind( | |
c(264, 127, 99), | |
c(161, 116, 67) | |
) | |
colnames(o) <- c("Border", "Grass", "Sand") | |
rownames(o) <- c("Moringa", "Vicinus") | |
## First let's get our chi value | |
## Expected values | |
e <- rowSums(o) %o% colSums(o) / sum(o) | |
## Chi Value | |
chi_obs <- sum((e-o)^2 / e) | |
## Estimate the proportions of eels at locations | |
## These are estimates of the population proportions | |
## Recall that we have assumed a multinomial distribution | |
## If that was true, this estimates the population parameters | |
n_m <- sum(o[1, ]) | |
p_m <- o[1, ] / n_m | |
n_v <- sum(o[2, ]) | |
p_v <- o[2, ] / n_v | |
## Simulate the Moringa Eels | |
moringa_sim <- rmultinom( | |
n = 1, # Run 1 experiment | |
size = n_m, # How many eels, roll dice 490 times | |
prob = p_v | |
) # Proportion of Moringa Eels | |
## Simulate Vicinus Eels | |
vicinus_sim <- rmultinom( | |
n = 1, # Run 1 experiment | |
size = n_v, # How many eels, roll dice 490 times | |
prob = p_m | |
) # Proportion of Moringa Eels | |
## Now we create the observed values | |
o <- rbind(c(moringa_sim), c(vicinus_sim)) | |
## Now we get the expected values we would estimate given that | |
e <- rowSums(o) %o% colSums(o) / sum(o) | |
## Now we calculate chi | |
sum((o - e)^2 / e) | |
## _________________________________________________ | |
## Below here we will replicate that to get a pvalue | |
## _________________________________________________ | |
chi_sim <- replicate(10^5, { | |
## Simulate the Moringa Eels | |
moringa_sim <- rmultinom( | |
n = 1, # Run 1 experiment | |
size = n_m, # How many eels, roll dice 490 times | |
prob = p_v) # Proportion of Moringa Eels | |
## Simulate Vicinus Eels | |
vicinus_sim <- rmultinom( | |
n = 1, # Run 1 experiment | |
size = n_v, # How many eels, roll dice 490 times | |
prob = p_m) # Proportion of Moringa Eels | |
## Now we create the observed values | |
o <- rbind(c(moringa_sim), c(vicinus_sim)) | |
## Now we get the expected values we would estimate given that | |
e <- rowSums(o) %o% colSums(o) / sum(o) | |
## Now we calculate chi | |
sum((o - e)^2 / e) | |
}) | |
## How often did we see values more extreme than our observation | |
## When the H_0 was true | |
pval <- mean(chi_sim > chi_obs) | |
round(pval, 2) ## 0.58 | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment