ValueError: Your setup doesn't support bf16/gpu. You need torch>=1.10, using Ampere GPU with cuda>=11.0
Change bf16 to fp16 for non Ampere GPUs
from pyspark.sql import SparkSession | |
# Initialize Spark Session | |
spark = SparkSession.builder \ | |
.appName("LocalSparkSQL") \ | |
.config("spark.sql.shuffle.partitions", "4") \ | |
.getOrCreate() |
# Read the CSV (with the first row as data) | |
df = spark.read.format("csv").option("header", "false").load("/path/to/csvfile") | |
# Extract the first row as the header | |
new_header = df.first() | |
# Create a new DataFrame without the first row | |
df_without_first_row = df.filter(df["_c0"] != new_header["_c0"]) |
import os | |
from langchain.document_loaders import PyPDFLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.embeddings import AzureOpenAIEmbeddings | |
from langchain.vectorstores import Chroma | |
from langchain.chains import RetrievalQA | |
from langchain.llms import AzureOpenAI | |
# Step 1: Load PDF Document | |
def load_pdf(pdf_path): |
import os | |
from langchain.document_loaders import PyPDFLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.embeddings import AzureOpenAIEmbeddings | |
from langchain.vectorstores import Chroma | |
# Step 1: Load PDF Document | |
def load_pdf(pdf_path): | |
loader = PyPDFLoader(pdf_path) | |
documents = loader.load() |
from flask import Flask, render_template, request, redirect, url_for | |
from langchain import LLMChain | |
from langchain.llms import OpenAI | |
from langchain.prompts import PromptTemplate | |
import spacy | |
app = Flask(__name__) | |
# Load spaCy's English model for entity recognition |
<!DOCTYPE html> | |
<html lang="en"> | |
<head> | |
<meta charset="UTF-8"> | |
<meta name="viewport" content="width=device-width, initial-scale=1.0"> | |
<title>Chat, Summarize & Translate Bot</title> | |
<script src="https://cdn.tailwindcss.com"></script> | |
<style> | |
.entity { |
! pip show datasets
Name: datasets
Version: 2.16.1
Summary: HuggingFace community-driven open-source library of datasets
Home-page: https://github.com/huggingface/datasets
Author: HuggingFace Inc.
!pip install git+https://github.com/huggingface/transformers.git -q -U # transformers version: 4.37.0
!pip install git+https://github.com/huggingface/accelerate.git -q -U # accelerate version: 0.27.0
!pip install bitsandbytes # bitsandbytes version: 0.42.0
!pip install git+https://github.com/huggingface/peft.git -q -U # peft version: 0.7.2
Segments | Scores | Descriptions |
---|---|---|
Best Customer |