Skip to content

Instantly share code, notes, and snippets.

@SnowMasaya
SnowMasaya / deply_deep_stream_Azure_IoT_version3.json
Created December 14, 2020 03:17
deply_deep_stream_Azure_IoT_version3.json
"$edgeHub": {
"properties.desired": {
"schemaVersion": "1.0",
"routes": {
"DeepstreamToIoTHub": "FROM /messages/modules/NVIDIADeepStreamSDK/outputs/* INTO $upstream"
},
"storeAndForwardConfiguration": {
"timeToLiveSecs": 7200
}
}
@SnowMasaya
SnowMasaya / deply_deep_stream_Azure_IoT_version2.json
Created December 14, 2020 03:15
deply_deep_stream_Azure_IoT_version2.json
"systemModules": {
"edgeAgent": {
"type": "docker",
"settings": {
"image": "mcr.microsoft.com/azureiotedge-agent:1.0",
"createOptions": {}
}
},
"edgeHub": {
"type": "docker",
@SnowMasaya
SnowMasaya / deply_deep_stream_Azure_IoT_version1.json
Created December 14, 2020 03:12
deply_deep_stream_Azure_IoT_version1.json
"NVIDIADeepStreamSDK": {
"version": "1.0",
"type": "docker",
"status": "running",
"restartPolicy": "always",
"settings": {
"image": "marketplace.azurecr.io/nvidia/deepstream-iot2-l4t:latest",
"createOptions": {
"HostConfig": {
"runtime": "nvidia"
@SnowMasaya
SnowMasaya / file0.py
Last active February 8, 2018 09:35
時系列データの予測ライブラリ--PyFlux-- ref: https://qiita.com/GushiSnow/items/437dde3293f6d77bfa58
import numpy as np
import pandas as pd
import pyflux as pf
from datetime import datetime
import matplotlib.pyplot as plt
%matplotlib inline
data = pd.read_csv('https://vincentarelbundock.github.io/Rdatasets/csv/datasets/sunspot.year.csv')
data.index = data['time'].values
@SnowMasaya
SnowMasaya / file0.txt
Created December 11, 2017 23:27
'Define by Run'型の深層学習フレームワークが自然言語処理に向いている理由 ref: https://qiita.com/GushiSnow/items/aa660c7228b7024076a8
いい夢見ろよ😴的な? 笑 さっ風呂入ろ ♨ ️
南港に沈めたら解決
チロルチョコ
@SnowMasaya
SnowMasaya / file0.txt
Last active December 5, 2017 23:11
高速かつ高性能な分散表現Gloveについて(PyTorch実装) ref: https://qiita.com/GushiSnow/items/e92ac2fea4f8448491ba
J(\theta) = \frac{1}{2}\sum^{W}_{i,j=1}f(P_{ij})(u^{T}_{i}v_j - \log{P_(ij)})^2
@SnowMasaya
SnowMasaya / file0.txt
Last active June 28, 2018 23:23
KerasでTensorboardを使用する際のTips ref: https://qiita.com/GushiSnow/items/6808121ba54fb2e53497
TensorBoard(log_dir=log_dir,
histogram_freq=1,
write_grads=True,
write_images=1,
embeddings_freq=1,
embeddings_layer_names=layer_name,
embeddings_metadata=metadata_file
)
@SnowMasaya
SnowMasaya / file0.txt
Last active April 15, 2018 23:52
PyTorchではじめるチャットボット ref: https://qiita.com/GushiSnow/items/f5ed09fd37315357eeae
Z^l = tanh(W^{l}_z*X^l+V^{l}_z\tilde{h}^{l}_T) \\
F^l = \sigma(W^{l}_f*X^l+V^{l}_f\tilde{h}^{l}_T) \\
O^l = \sigma(W^{l}_o*X^l+V^{l}_o\tilde{h}^{l}_T) \\
@SnowMasaya
SnowMasaya / file0.py
Last active October 24, 2018 10:38
PyTorchで始める物体検出:Yolo 9000 Better, Faster, Stronger ref: https://qiita.com/GushiSnow/items/470512e5c04fcdfe7c59
class Conv2d_BatchNorm(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, relu=True, same_padding=False):
super(Conv2d_BatchNorm, self).__init__()
padding = int((kernel_size - 1) / 2) if same_padding else 0
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding=padding, bias=False)
self.bn = nn.BatchNorm2d(out_channels, momentum=0.01)
self.relu = nn.LeakyReLU(0.1, inplace=True) if relu else None
def forward(self, x):
@SnowMasaya
SnowMasaya / file0.txt
Last active June 28, 2018 23:22
KerasによるLSTMの高速化: cuDNNLSTM ref: https://qiita.com/GushiSnow/items/65975667482291329bd5
pip install git+https://github.com/fchollet/keras.git