Last active
March 18, 2021 04:30
-
-
Save Soumi7/fb82e00f85f630f983eb88d197d9b169 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from flask import Flask, request, jsonify, render_template | |
import simpletransformers | |
import pandas as pd | |
import requests | |
from simpletransformers.ner import NERModel | |
import json | |
import io | |
from flask_csv import send_csv | |
from flask import make_response | |
from flask import session, redirect | |
app = Flask(__name__) | |
@app.route('/') | |
def home(): | |
return render_template('index.html') | |
@app.route('/predict',methods=['POST',"GET"]) | |
def predict(): | |
''' | |
For rendering results on HTML GUI | |
''' | |
int_features = [x for x in request.form.values()] | |
print(int_features) | |
sentence = int_features[0] | |
if int_features[1] == 'display': | |
model1 = NERModel('bert', 'MODEL', | |
labels=[LIST OF UNIQUE LABELS], | |
args={"save_eval_checkpoints": False, | |
"save_steps": -1, | |
"output_dir": "MODEL", | |
'overwrite_output_dir': True, | |
"save_model_every_epoch": False, | |
'reprocess_input_data': True, | |
"train_batch_size": 10,'num_train_epochs': 5,"max_seq_length": 256}, use_cuda=False) | |
predictions, raw_outputs = model1.predict([sentence]) | |
result = json.dumps(predictions[0]) | |
return render_template('index.html', prediction_text=result) | |
elif int_features[1] == 'getcsv': | |
model1 = NERModel('bert', 'MODEL', | |
labels=[LIST OF LABELS], | |
args={"save_eval_checkpoints": False, | |
"save_steps": -1, | |
"output_dir": "MODEL", | |
'overwrite_output_dir': True, | |
"save_model_every_epoch": False, | |
'reprocess_input_data': True, | |
"train_batch_size": 10,'num_train_epochs': 5,"max_seq_length": 256}, use_cuda=False) | |
predictions, raw_outputs = model1.predict([sentence]) | |
l=[] | |
for i in predictions[0]: | |
dic={} | |
for j in i.keys(): | |
dic['word']=j | |
dic['tag']=i[j] | |
l.append(dic) | |
return send_csv(l,"tags.csv",["word","tag"]) | |
if __name__ == "__main__": | |
app.run(debug=True) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Thank you!