Created
October 2, 2024 13:46
-
-
Save TadaoYamaoka/694ac32616620c1e5e6076d55cdf85e7 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import matplotlib.pyplot as plt | |
import numpy as np | |
import torch | |
import torch.optim as optim | |
import torchvision | |
from scipy import integrate | |
from torch.utils.data import DataLoader | |
from torchvision import datasets, transforms | |
from unet import Unet | |
batch_size = 128 | |
learning_rate = 0.001 | |
num_epochs = 10 | |
eps = 0.001 | |
condition = True | |
transform = transforms.Compose( | |
[transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))] | |
) | |
train_dataset = datasets.MNIST( | |
root="./data", train=True, download=True, transform=transform | |
) | |
dataloader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = Unet( | |
dim=32, | |
channels=1, | |
dim_mults=(1, 2, 4), | |
condition=condition, | |
) | |
model.to(device) | |
optimizer = optim.Adam(model.parameters(), lr=learning_rate) | |
def euler_sampler(model, shape, sample_N): | |
model.eval() | |
cond = torch.arange(10).repeat(shape[0] // 10).to(device) if condition else None | |
with torch.no_grad(): | |
z0 = torch.randn(shape, device=device) | |
x = z0.detach().clone() | |
dt = 1.0 / sample_N | |
for i in range(sample_N): | |
num_t = i / sample_N * (1 - eps) + eps | |
t = torch.ones(shape[0], device=device) * num_t | |
pred = model(x, t * 999, cond) | |
x = x.detach().clone() + pred * dt | |
nfe = sample_N | |
return x.cpu(), nfe | |
def to_flattened_numpy(x): | |
return x.detach().cpu().numpy().reshape((-1,)) | |
def from_flattened_numpy(x, shape): | |
return torch.from_numpy(x.reshape(shape)) | |
def rk45_sampler(model, shape): | |
rtol = atol = 1e-05 | |
model.eval() | |
cond = torch.arange(10).repeat(shape[0] // 10).to(device) if condition else None | |
with torch.no_grad(): | |
z0 = torch.randn(shape, device=device) | |
x = z0.detach().clone() | |
def ode_func(t, x): | |
x = from_flattened_numpy(x, shape).to(device).type(torch.float32) | |
vec_t = torch.ones(shape[0], device=x.device) * t | |
drift = model(x, vec_t * 999, cond) | |
return to_flattened_numpy(drift) | |
solution = integrate.solve_ivp( | |
ode_func, | |
(eps, 1), | |
to_flattened_numpy(x), | |
rtol=rtol, | |
atol=atol, | |
method="RK45", | |
) | |
nfe = solution.nfev | |
x = torch.tensor(solution.y[:, -1]).reshape(shape).type(torch.float32) | |
return x, nfe | |
def imshow(img, filename): | |
img = img * 0.3081 + 0.1307 | |
img = np.clip(img, 0, 1) | |
npimg = img.numpy() | |
plt.imshow(npimg[0], cmap="gray") | |
plt.axis("off") | |
plt.savefig(filename, bbox_inches="tight", pad_inches=0) | |
def save_img_grid(img, filename): | |
img_grid = torchvision.utils.make_grid(img, nrow=10) | |
imshow(img_grid, filename) | |
for epoch in range(num_epochs): | |
total_loss = 0 | |
model.train() | |
for batch, cond in dataloader: | |
batch = batch.to(device) | |
optimizer.zero_grad() | |
z0 = torch.randn_like(batch) | |
t = torch.rand(batch.shape[0], device=device) * (1 - eps) + eps | |
t_expand = t.view(-1, 1, 1, 1).repeat( | |
1, batch.shape[1], batch.shape[2], batch.shape[3] | |
) | |
perturbed_data = t_expand * batch + (1 - t_expand) * z0 | |
target = batch - z0 | |
score = model(perturbed_data, t * 999, cond.to(device) if condition else None) | |
losses = torch.square(score - target) | |
losses = torch.mean(losses.reshape(losses.shape[0], -1), dim=-1) | |
loss = torch.mean(losses) | |
loss.backward() | |
optimizer.step() | |
total_loss += loss.item() | |
print(f"Epoch {epoch + 1}, Loss: {total_loss / len(dataloader)}") | |
images, nfe = euler_sampler(model, shape=(100, 1, 28, 28), sample_N=1) | |
save_img_grid(images, f"output/euler_epoch_{epoch + 1}_nfe_{nfe}.png") | |
images, nfe = euler_sampler(model, shape=(100, 1, 28, 28), sample_N=2) | |
save_img_grid(images, f"output/euler_epoch_{epoch + 1}_nfe_{nfe}.png") | |
images, nfe = euler_sampler(model, shape=(100, 1, 28, 28), sample_N=10) | |
save_img_grid(images, f"output/euler_epoch_{epoch + 1}_nfe_{nfe}.png") | |
images, nfe = rk45_sampler(model, shape=(100, 1, 28, 28)) | |
save_img_grid(images, f"output/rk45_epoch_{epoch + 1}_nfe_{nfe}.png") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment