This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/bin/bash | |
module load rocm/6.2.4 | |
module load libfabric/1.20 | |
module load gcc/11.2.0 | |
export CC=$(which gcc) | |
export CUDAHOSTCXX=$(which g++) | |
export CXX=$(which g++) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Config: max_steps: 17500, lora_r: 64 , lr: 0.0002, bf16: False, lora_modules: all , bits: 4 , full_finetune: False, lora_dropout: 0.0 , warmup_steps: 100 , compress_statistics: True, dataset: NaN , gradient_accumulation_steps: NaN , learning_rate: NaN , quant_type: fp4 , adam_beta2: 0.999, update_freq: 6 | |
eval_bert_f1 mean (SE): 64.8716 (21.8331). 95% CI (22.079, 107.664). Sample size: 4 | |
eval_bert_f1 mean (SE): 64.8716 (21.8331). 95% CI (22.079, 107.664). Sample size: 4 | |
eval_rougeL mean (SE): 33.1083 (19.1162). 95% CI (-4.359, 70.576). Sample size: 4 | |
================================================================================ | |
Config: max_steps: 17500, lora_r: 64 , lr: 0.0002, bf16: False, lora_modules: all , bits: 4 , full_finetune: False, lora_dropout: 0.0 , warmup_steps: 100 , compress_statistics: False, dataset: NaN , gradient_accumulation_steps: NaN , learning_rate: NaN , quant_type: fp4 , adam_beta2: 0.999, update_freq: 6 | |
eval_bert_f1 mean (SE): 67.0044 (22.3593). 95% CI (23.180, 110.829). |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This table contains data from multiple software versions. Some hyperparamter names are "NaN" meaning, they did not exist in that software version. The best 7B result is 40.08 MMLU. | |
================================================================================ | |
Config: learning_rate: 0.005, adam_beta2: 0.999, lora_dropout: 0.0 , max_grad_norm: 1.0 , max_steps: 7320, lr_scheduler_type: <SchedulerType.COSINE: cosine>, weight_decay: 0.0 , base_model: /gscratch/zlab/llama/7B, quant_type: nf4 , gradient_accumulation_steps: 6 , per_device_train_batch_size: 2 | |
acc mean (SE): 0.2290 (nan). 95% CI (nan, nan). Sample size: 1 | |
================================================================================ | |
Config: learning_rate: 0.0002, adam_beta2: 0.999, lora_dropout: 0.0 , max_grad_norm: 0.3 , max_steps: 9750, lr_scheduler_type: <SchedulerType.CONSTANT: constant>, weight_decay: 0.0 , base_model: NaN , quant_type: nf4 , gradient_accumulation_steps: 2 , per_device_train_batch_size: 8 | |
acc mean (SE): 0.2290 (0.0 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
MAX_NEW_TOKENS = 128 | |
model_name = 'facebook/opt-6.7b' | |
text = """Hello, I am a prompt. Who are you?""" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
input_ids = tokenizer(text, return_tensors="pt").input_ids |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import bitsandbytes as bnb | |
from heapq import heappush, heappop, heapify | |
a = torch.normal(0, 0.5, size=(1024, 1024),device='cuda') | |
def get_compression(x:torch.Tensor)->float: | |
"""Yields the compression rate of Huffman Coding""" | |
assert x.device.type == 'cuda' |