Created
July 8, 2023 03:44
-
-
Save Trebor-Huang/4a10a9ff8fabc063425d1d6c7c188d2a to your computer and use it in GitHub Desktop.
An inductive family puzzle
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{-# OPTIONS --cubical #-} | |
module HitPuzzle where | |
open import Cubical.Foundations.Everything | |
open import Cubical.Data.Empty | |
open import Cubical.Data.Sum | |
open import Cubical.Data.Sigma | |
open import Cubical.Data.Maybe | |
open import Cubical.Data.Nat | |
data Perm : Type → Type₁ where | |
Zero : Perm ⊥ | |
Succ : ∀ {X} → Perm X → Perm (Maybe X) | |
RFin : ℕ → Type | |
-- This is Cubical.Data.Fin.Recursive | |
-- but the library doesn't have anything useful | |
RFin zero = ⊥ | |
RFin (suc n) = Maybe (RFin n) | |
-- RFin n ≃ Fin n | |
size : ∀ {X} → Perm X → ℕ | |
size Zero = 0 | |
size (Succ r) = suc (size r) | |
path : ∀ {X} (r : Perm X) → X ≡ RFin (size r) | |
path Zero = refl | |
path (Succ r) = cong Maybe (path r) | |
idPerm : ∀ n → Perm (RFin n) | |
idPerm zero = Zero | |
idPerm (suc n) = Succ (idPerm n) | |
toPerm : ∀ {X} n → X ≡ RFin n → Perm X | |
toPerm n p = subst Perm (sym p) (idPerm n) | |
toPermRefl : ∀ n → toPerm n refl ≡ idPerm n | |
toPermRefl n = transportRefl (idPerm n) | |
zig : ∀ {X} (p : Perm X) → toPerm (size p) (path p) ≡ p | |
zig Zero = transportRefl Zero -- Regularity | |
zig (Succ p) | |
= substCommSlice _ (Perm ∘ Maybe) (λ _ → Succ) _ (idPerm (size p)) | |
∙ cong Succ (zig p) | |
zag-size-id : ∀ n → n ≡ size (idPerm n) | |
zag-size-id zero = refl | |
zag-size-id (suc n) = cong suc (zag-size-id n) | |
zag-path-id : ∀ n → cong RFin (zag-size-id n) ≡ path (idPerm n) | |
zag-path-id zero = refl | |
zag-path-id (suc n) i j = Maybe (zag-path-id n i j) | |
-- Slightly more general universes | |
-- To be PR'd | |
substInPaths' : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} {a a' : A} | |
→ (f g : A → B) → (p : a ≡ a') (q : f a ≡ g a) | |
→ subst (λ x → f x ≡ g x) p q ≡ sym (cong f p) ∙ q ∙ cong g p | |
substInPaths' {a = a} f g p q = | |
J (λ x p' → (subst (λ y → f y ≡ g y) p' q) ≡ (sym (cong f p') ∙ q ∙ cong g p')) | |
p=refl p | |
where | |
p=refl : subst (λ y → f y ≡ g y) refl q | |
≡ refl ∙ q ∙ refl | |
p=refl = subst (λ y → f y ≡ g y) refl q | |
≡⟨ substRefl {B = (λ y → f y ≡ g y)} q ⟩ q | |
≡⟨ (rUnit q) ∙ lUnit (q ∙ refl) ⟩ refl ∙ q ∙ refl ∎ | |
zag-id : ∀ m → Path (Σ[ n ∈ ℕ ] RFin m ≡ RFin n) (size (idPerm m), path (idPerm m)) (m , refl) | |
zag-id m = sym $ ΣPathP (zag-size-id m , | |
toPathP | |
( substInPaths' (λ _ → RFin m) (λ n → RFin n) (zag-size-id m) refl | |
∙ cong (refl ∙_) (sym (lUnit _)) | |
∙ sym (lUnit _) | |
∙ zag-path-id m)) | |
theorem : ∀ {X} → Iso (Perm X) (Σ[ n ∈ ℕ ] X ≡ RFin n) | |
theorem .Iso.fun p = size p , path p | |
theorem .Iso.inv (n , p) = toPerm n p | |
theorem .Iso.leftInv = zig | |
theorem .Iso.rightInv (n , p) = J | |
(λ X q → (size (toPerm n (sym q)) , path (toPerm n (sym q))) ≡ (n , (sym q))) | |
(cong (λ u → (size u , path u)) (toPermRefl n) ∙ zag-id n) | |
(sym p) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment