Created
November 27, 2017 11:53
-
-
Save VictorGarritano/129628b520166927df74158204a337a6 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
n = 50 | |
Xtest = np.linspace(-5, 5, n).reshape(-1,1) | |
def kernel(a, b, param): | |
sqdist = np.sum(a**2, 1).reshape(-1,1) + np.sum(b**2, 1) - 2*np.dot(a, b.T) | |
return np.exp(-0.5 * (1/param) * sqdist) | |
param = 0.1 | |
K_ss = kernel(Xtest, Xtest, param) | |
L = np.linalg.cholesky(K_ss + 1e-15*np.eye(n)) | |
f_prior = np.dot(L, np.random.normal(size=(n,3))) | |
# plt.plot(Xtest, f_prior) | |
# plt.title('Three samples from the GP prior') | |
# plt.grid() | |
# plt.xlim([-5, 5]) | |
# plt.show() | |
Xtrain = np.array([-4, -3, -2, -1, 1]).reshape(5, 1) | |
ytrain = np.sin(Xtrain) | |
K = kernel(Xtrain, Xtrain, param) | |
L = np.linalg.cholesky(K + 0.00005*np.eye(len(Xtrain))) | |
K_s = kernel(Xtrain, Xtest, param) | |
Lk = np.linalg.solve(L, K_s) | |
mu = np.dot(Lk.T, np.linalg.solve(L, ytrain)).reshape((n,)) | |
s2 = np.diag(K_ss) - np.sum(Lk**2, axis=0) | |
stdv = np.sqrt(s2) | |
L = np.linalg.cholesky(K_ss + 1e-6*np.eye(n) - np.dot(Lk.T, Lk)) | |
f_post = mu.reshape(-1,1) + np.dot(L, np.random.normal(size=(n,3))) | |
plt.plot(Xtrain, ytrain, 'bs', ms=8) | |
plt.plot(Xtest, f_post) | |
plt.gca().fill_between(Xtest.flat, mu-2*stdv, mu+2*stdv, color="#dddddd") | |
plt.plot(Xtest, mu, 'r--', lw=2) | |
# pl.axis([-5, 5, -3, 3]) | |
plt.title('Three samples from the GP posterior') | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment