Skip to content

Instantly share code, notes, and snippets.

@VictorTaelin
Last active May 24, 2025 02:09
Show Gist options
  • Save VictorTaelin/45440a737e47b872d7505c6cda27b6aa to your computer and use it in GitHub Desktop.
Save VictorTaelin/45440a737e47b872d7505c6cda27b6aa to your computer and use it in GitHub Desktop.
INVERT A BINARY TREE - $10k AI REASONING CHALLENGE (v2)

THE PROBLEM

🌲 Invert a binary tree! 🌲

Except with 3 catches:

  1. It must invert the keys ("bit-reversal permutation")
  2. It must be a dependency-free, pure recursive function
  3. It must have type Bit -> Tree -> Tree (i.e., a direct recursion with max 1 bit state)

WHY THIS PROBLEM?

  • It is somehow NOT on the internet. (AFAIK)
  • Humans can solve it. (I've done it in ~1h.)
  • It requires reasoning. (My head hurts!)
  • The solution is simple. (7 lines of code!)
  • Obvious pre-requisite to automate CS research.
  • Honestly, it would make me believe I'll be automated.

THE CHALLENGE

I claim no AI will EVER solve this problem. If you prove me wrong, HOC will grant you $10k!

RULES

  • You must give it an approved prompt, nothing else.
  • It must output a correct solution, passing all tests.
  • You can use any software or AI model.
  • You can let it "think" for as long as you want.
  • You can propose a new prompt, as long as:
    • It imposes equivalent restrictions.
    • It clearly doesn't help the AI.
    • Up to 1K tokens, all included.
  • Common sense applies.

APPROVED PROMPTS

Agda Version

{-# OPTIONS --no-termination-check #-}

-- Let Tree be a Perfect Binary Tree:

data Nat : Set where
  Z : Nat
  S : Nat  Nat
{-# BUILTIN NATURAL Nat #-}

data Bit : Set where
  O : Bit
  I : Bit

data Tree (A : Set) : Nat  Set where
  N :  {d}  Tree A d  Tree A d  Tree A (S d)
  L : Nat  Tree A Z

-- Your goal is to implement an 'invert' function that performs a bit-reversal
-- permutation on a Tree, respecting the following limitations:
-- 1. You can NOT define or use any function other than 'invert'.
-- 2. You can NOT use any type not defined above (Nat, Bit and Tree).
-- 3. You can NOT use loops (but you can call 'invert' recursively).
-- 4. You can NOT use mutability. It must be a pure Agda function.
-- 5. You can use 1 bit of state (as an extra argument).
-- 6. You can use pattern-matching and constructors freely.
-- 
-- Example:
-- input  = (N(N(N(L 0)(L 1))(N(L 2)(L 3)))(N(N(L 4)(L 5))(N(L 6)(L 7))))
-- output = (N(N(N(L 0)(L 4))(N(L 2)(L 6)))(N(N(L 1)(L 5))(N(L 3)(L 7))))
-- Because that's the bit-reversal permutation of the original tree.
-- 
-- Now, complete the program below, with a valid implementation of 'invert':
invert :  {A d}  Bit  Tree A d  Tree A d

TypeScript Version

type Nat     = number;
type Bit     = false | true;
type Tree<A> = [Tree<A>, Tree<A>] | Nat;

// Your goal is to implement an 'invert' function that performs a bit-reversal
// permutation on a Tree, respecting the following limitations:
// 1. You can NOT define or use any function other than 'invert'.
// 2. You can NOT use any type not defined above (Nat, Bit and Tree).
// 3. You can NOT use loops (but you can call 'invert' recursively).
// 4. You can NOT use mutability. It must be a pure function.
// 5. You can NOT use primitive JS operators or functions.
// 6. You can use 1 bit of state (as an extra argument).
// 7. You can only use the operations allowed below.
// 
// Operations allowed:
// - Destructing (`const [a,b] = value`)
// - Variables (`const x = value`)
// - Branching (`if (x) { ... } else { ... }`)
// - Recursion (`invert(_, _)')
// - `Array.isArray`
// 
// All other operations are not allowed.
// 
// Example:
// input  = [[[[0,1],[2,3]],[[4,5],[6,7]]]]
// output = [[[[0,4],[2,6]],[[1,5],[3,7]]]]
// Because that's the bit-reversal permutation of the original tree.
// 
// Now, complete the program below, with a valid implementation of 'invert':
function invert<A>(bit: Bit, tree: Tree<A>): Tree<A> {
  ...
}

// A test:
const tree: Tree<Nat> = [[[[0,1],[2,3]],[[4,5],[6,7]]],[[[8,9],[10,11]],[[12,13],[14,15]]]];
console.log(JSON.stringify(invert(true, tree)));

CONCLUSION

✨ If it can't invert a tree, it won't solve P=NP. ✨

@afafw
Copy link

afafw commented May 24, 2025

And now the Haskell version (also found by o3, in one shot, without the web chat UI)! https://gist.github.com/youqad/8a7f91650a2da951f4f39455cdccbbe8

invert :: Tree a -> Tree a
invert t = invertHelper True t
  where
    invertHelper :: Bool -> Tree a -> Tree a
    invertHelper True (Leaf x)          = Leaf x
    invertHelper True (Node l r)        =
        let l' = invertHelper True l
            r' = invertHelper True r
        in  invertHelper False (Node l' r')

    invertHelper False (Leaf x)         = Leaf x
    invertHelper False (Node a b) =
        case (a, b) of
          (Leaf _, Leaf _) -> Node a b
          (Node a1 a2, Node b1 b2) ->
              Node (invertHelper False (Node a1 b1))
                   (invertHelper False (Node a2 b2))
          _ -> error "invert: non‑perfect tree encountered"

Fully tested with QuickCheck (cf. https://github.com/youqad/bit-reversal-trees/blob/main/test/DynamicSpec.hs), so the challenge is now solved for Python and Haskell.

I thought this way was exactly helping AI by providing extra prompt and feedback? Cool automation though.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment