Created
May 6, 2025 04:12
-
-
Save YouJiacheng/687efdab59a3c3b4ad89864804bd918a to your computer and use it in GitHub Desktop.
code for repro regression, data available in: https://github.com/KellerJordan/modded-nanogpt/
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
[project] | |
name = "modded-nanogpt" | |
version = "0.1.0" | |
description = "Add your description here" | |
readme = "README.md" | |
requires-python = "==3.12.*" | |
dependencies = [ | |
"numpy>=2.1.3", | |
"torch", | |
"pytorch-triton", | |
"huggingface-hub>=0.26.2", | |
"tqdm>=4.67.0", | |
"pip>=25.1.1", | |
] | |
[tool.uv] | |
environments = [ | |
"sys_platform == 'linux'", | |
] | |
override-dependencies = ["nvidia-nccl-cu12==2.24.3"] | |
[tool.uv.sources] | |
torch = [ | |
{ url = "https://download.pytorch.org/whl/nightly/cu126/torch-2.7.0.dev20250312%2Bcu126-cp312-cp312-manylinux_2_28_x86_64.whl" }, | |
] | |
pytorch-triton = [ | |
{ index = "pytorch-nightly-cu126" }, | |
] | |
[[tool.uv.index]] | |
name = "pytorch-nightly-cu126" | |
url = "https://download.pytorch.org/whl/nightly/cu126" | |
explicit = true |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import sys | |
with open(sys.argv[0]) as f: | |
code = f.read() # read the code of this file ASAP, for logging | |
import uuid | |
import time | |
import copy | |
from dataclasses import dataclass | |
from functools import lru_cache | |
from pathlib import Path | |
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True" | |
import torch | |
torch.empty(1, device="cuda", requires_grad=True).backward() # prevents a bug on some systems | |
from torch import Tensor, nn | |
import torch.nn.functional as F | |
import torch.distributed as dist | |
# use of FlexAttention contributed by @KoszarskyB | |
from torch.nn.attention.flex_attention import BlockMask, flex_attention | |
torch._inductor.config.coordinate_descent_tuning = True # we have banned this flag for new records because it causes compilation to take 30min | |
torch._dynamo.config.compiled_autograd = True | |
# ----------------------------------------------------------------------------- | |
# Muon optimizer | |
def zeropower_via_newtonschulz5(G: Tensor) -> Tensor: | |
""" | |
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a | |
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose | |
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at | |
zero even beyond the point where the iteration no longer converges all the way to one everywhere | |
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T | |
where S' is diagonal with S_{ii}' ∈ [1 - l, 1 + r], which turns out not to hurt model | |
performance at all relative to UV^T, where USV^T = G is the SVD. | |
""" | |
assert G.ndim >= 2 # batched Muon implementation by @scottjmaddox, and put into practice in the record by @YouJiacheng | |
X = G.bfloat16() | |
if G.size(-2) > G.size(-1): | |
X = X.mT | |
# Ensure spectral norm is at most 1 | |
X = X / (X.norm(dim=(-2, -1), keepdim=True) + 1e-7) | |
# Perform the NS iterations | |
for a, b, c in [ | |
(4.0848, -6.8946, 2.9270), | |
(3.9505, -6.3029, 2.6377), | |
(3.7418, -5.5913, 2.3037), | |
(2.8769, -3.1427, 1.2046), | |
(2.8366, -3.0525, 1.2012), | |
]: | |
A = X @ X.mT | |
B = b * A + c * A @ A # quintic computation strategy adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng | |
X = a * X + B @ X | |
if G.size(-2) > G.size(-1): | |
X = X.mT | |
return X | |
@torch.compile | |
def update(acc_bf16_view_u16: Tensor, mantissa: Tensor, momentum_buffer: Tensor, grad: Tensor, momentum: Tensor, eff_lr: Tensor, eff_weight_decay: Tensor): | |
assert acc_bf16_view_u16.dtype == mantissa.dtype == torch.uint16 | |
grad = grad.float() | |
momentum_buffer.copy_(momentum * momentum_buffer + (1 - momentum) * grad) | |
v = zeropower_via_newtonschulz5(momentum * momentum_buffer + (1 - momentum) * grad) | |
acc_m_u32 = (acc_bf16_view_u16.to(torch.uint32) << 16) | mantissa.to(torch.uint32) | |
acc_m_u32.view(torch.float32).mul_(1 - eff_weight_decay) | |
acc_m_u32.view(torch.float32).add_(other=v, alpha=-eff_lr) | |
acc_bf16_view_u16.copy_((acc_m_u32 >> 16).to(torch.uint16)) | |
mantissa.copy_(acc_m_u32.to(torch.uint16)) | |
class Muon(torch.optim.Optimizer): | |
""" | |
Muon - MomentUm Orthogonalized by Newton-schulz | |
https://kellerjordan.github.io/posts/muon/ | |
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post- | |
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal | |
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has | |
the advantage that it can be stably run in bfloat16 on the GPU. | |
Warning: This optimizer should not be used for the embedding layer, the final fully connected layer, | |
or any {0,1}-D parameters; those should all be optimized by a standard method (e.g., AdamW). | |
""" | |
def __init__(self, params, lr=0.02, weight_decay=0.01, momentum=0.95, rank=0, world_size=1): | |
self.rank = rank | |
self.world_size = world_size | |
defaults = dict(lr=lr, weight_decay=weight_decay, momentum=momentum) | |
super().__init__(params, defaults) | |
assert all(p.dtype == torch.bfloat16 for group in self.param_groups for p in group["params"]) | |
@torch.no_grad() | |
def step(self): | |
futures: list[torch.Future] = [] | |
for group in self.param_groups: | |
params: list[Tensor] = group["params"] | |
params_pad = params + [torch.empty_like(params[-1])] * self.world_size | |
momentum = torch._as_tensor_fullprec(group["momentum"]) | |
for base_i in range(len(params))[::self.world_size]: | |
if base_i + self.rank < len(params): | |
p = params[base_i + self.rank] | |
state = self.state[p] | |
if len(state) == 0: | |
state["mantissa"] = torch.zeros_like(p, dtype=torch.uint16) | |
state["momentum_buffer"] = torch.zeros_like(p, dtype=torch.float32) | |
update( | |
p.view(torch.uint16), state["mantissa"], state["momentum_buffer"], | |
p.grad, momentum, | |
eff_lr=torch._as_tensor_fullprec(group["lr"] * max(1, p.size(-2) / p.size(-1)) ** 0.5), | |
eff_weight_decay=torch._as_tensor_fullprec(group["lr"] * group["weight_decay"] * getattr(p, "wd_mul", 1.0)), | |
) | |
futures.append(dist.all_gather(params_pad[base_i:base_i + self.world_size], params_pad[base_i + self.rank], async_op=True).get_future()) | |
torch.futures.collect_all(futures).wait() | |
# ----------------------------------------------------------------------------- | |
# PyTorch nn.Module definitions for the model | |
def norm(x: Tensor): | |
return F.rms_norm(x, (x.size(-1),)) | |
@torch.no_grad() | |
def init_linear(w: Tensor): | |
std = 0.5 * (w.size(-1) ** -0.5) # 0.5 is a bit better than the default 1/sqrt(3) | |
bound = (3 ** 0.5) * std | |
return w.uniform_(-bound, bound) | |
class Rotary(nn.Module): | |
def __init__(self, dim: int, max_seq_len: int): | |
super().__init__() | |
# half-truncate RoPE by @YouJiacheng (w/ base freq tuning) | |
angular_freq = (1 / 1024) ** torch.linspace(0, 1, steps=dim//4, dtype=torch.float32) | |
angular_freq = torch.cat([angular_freq, angular_freq.new_zeros(dim//4)]) | |
t = torch.arange(max_seq_len, dtype=torch.float32) | |
theta = torch.einsum("i,j -> ij", t, angular_freq) | |
self.cos = nn.Buffer(theta.cos(), persistent=False) | |
self.sin = nn.Buffer(theta.sin(), persistent=False) | |
def forward(self, x_BTHD: Tensor): | |
assert self.cos.size(0) >= x_BTHD.size(-3) | |
cos, sin = self.cos[None, :x_BTHD.size(-3), None, :], self.sin[None, :x_BTHD.size(-3), None, :] | |
x1, x2 = x_BTHD.to(dtype=torch.float32).chunk(2, dim=-1) | |
y1 = x1 * cos + x2 * sin | |
y2 = x1 * (-sin) + x2 * cos | |
return torch.cat((y1, y2), 3).type_as(x_BTHD) | |
class CausalSelfAttention(nn.Module): | |
def __init__(self, dim: int, num_heads: int, max_seq_len: int, head_dim=128): | |
super().__init__() | |
self.num_heads = num_heads | |
self.head_dim = head_dim | |
hdim = num_heads * head_dim | |
# merged QKV weights: suggested by many, implemented by @fernbear.bsky.social, and further improved by @YouJiacheng | |
# https://x.com/hi_tysam/status/1879699187107033311 | |
self.qkvo_w = nn.Parameter(init_linear(torch.empty(4, hdim, dim)).bfloat16()) | |
self.qkvo_w.detach()[3].zero_() # out zero init suggested by @Grad62304977 | |
self.rotary = Rotary(head_dim, max_seq_len) | |
# scale the attention logits by given constant, instead of the default head_dim**-0.5, by @leloykun | |
# inspired by learnable scalars used by @brendanh0gan https://x.com/hi_tysam/status/1879693583898591283 | |
self.attn_scale = 0.12 | |
def forward(self, x: Tensor, ve: Tensor | None, block_mask: BlockMask, lambdas: Tensor): | |
B, T = x.size(0), x.size(1) # batch size, sequence length | |
assert B == 1, "Must use batch size = 1 for FlexAttention" | |
q, k, v = F.linear(x, self.qkvo_w[:3].flatten(end_dim=1)).view(B, T, 3 * self.num_heads, self.head_dim).chunk(3, dim=-2) | |
q, k = norm(q), norm(k) # QK norm @Grad62304977 | |
q, k = self.rotary(q), self.rotary(k) | |
v = norm(v) | |
if ve is not None: | |
v = lambdas[0] * v + lambdas[1] * ve.view_as(v) # @KoszarskyB & @Grad62304977 | |
else: # skip mid-layers token value embeddings by @YouJiacheng | |
v = lambdas[0] * v | |
y = flex_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), block_mask=block_mask, scale=self.attn_scale).transpose(1, 2) | |
y = y.contiguous().view(B, T, self.num_heads * self.head_dim) # re-assemble all head outputs side by side | |
y = F.linear(y, self.qkvo_w[3]) | |
return y | |
class MLP(nn.Module): | |
def __init__(self, dim: int): | |
super().__init__() | |
hdim = 4 * dim | |
self.fc_w = nn.Parameter(init_linear(torch.empty(hdim, dim)).bfloat16()) | |
self.proj_w = nn.Parameter(torch.zeros(dim, hdim).bfloat16()) | |
self.fc_w.wd_mul = 2.0 | |
self.proj_w.wd_mul = 2.0 | |
def forward(self, x: Tensor): | |
x = F.linear(x, self.fc_w) | |
x = F.relu(x).square() # https://arxiv.org/abs/2109.08668v2; ~1-2% better than GELU; suggested by @SKYLINEZ007 and @Grad62304977 | |
x = F.linear(x, self.proj_w) | |
return x | |
class Block(nn.Module): | |
def __init__(self, dim: int, num_heads: int, max_seq_len: int, layer_idx: int): | |
super().__init__() | |
# skip attention of blocks.7 (the 8th layer) by @YouJiacheng | |
self.attn = CausalSelfAttention(dim, num_heads, max_seq_len) if layer_idx != 7 else None | |
self.mlp = MLP(dim) | |
def forward(self, x: Tensor, ve: Tensor | None, x0: Tensor, block_mask: BlockMask, lambdas: Tensor, sa_lambdas: Tensor): | |
x = lambdas[0] * x + lambdas[1] * x0 | |
if self.attn is not None: | |
x = x + self.attn(x, ve, block_mask, sa_lambdas) | |
x = x + self.mlp(norm(x)) | |
return x | |
# ----------------------------------------------------------------------------- | |
# The main model | |
def next_multiple_of_n(v: float | int, *, n: int): | |
return next(x for x in range(n, int(v) + 1 + n, n) if x >= v) | |
class GPT(nn.Module): | |
def __init__(self, vocab_size: int, num_layers: int, num_heads: int, model_dim: int, max_seq_len: int): | |
super().__init__() | |
self.embed = nn.Embedding(vocab_size, model_dim) | |
# token value embeddings by @KoszarskyB - inspired by @Grad62304977's value residual implementation following https://arxiv.org/abs/2410.17897 | |
# value embedding code simplification inspired by @ragulpr https://github.com/KellerJordan/modded-nanogpt/pull/78 | |
self.value_embeds = nn.ModuleList([nn.Embedding(vocab_size, model_dim) for _ in range(3)]) | |
self.blocks = nn.ModuleList([Block(model_dim, num_heads, max_seq_len, i) for i in range(num_layers)]) | |
# there are only 50257 unique GPT-2 tokens; we extend to nearest multiple of 128 for efficiency. | |
# suggested to me by @Grad62304977. this originates from Karpathy's experiments. | |
self.lm_head_w = nn.Parameter(torch.zeros(next_multiple_of_n(vocab_size, n=128), model_dim)) | |
# Add learnable skip connection weights for decoder layers | |
assert num_layers % 2 == 0 | |
self.scalars = nn.Parameter(torch.cat([ | |
torch.ones(num_layers), # skip_weights | |
*[torch.tensor([1.0, 0.0]) for _ in range(num_layers)], # block lambdas | |
*[torch.tensor([0.5, 0.5]) for _ in range(num_layers)], # SA lambdas | |
])) | |
def create_blockmasks(self, input_seq: Tensor, sliding_window_num_blocks: Tensor): | |
BLOCK_SIZE = 128 | |
docs = (input_seq == 50256).cumsum(0) | |
def document_causal(b, h, q_idx, kv_idx): | |
causal_mask = q_idx >= kv_idx | |
document_mask = docs[q_idx] == docs[kv_idx] | |
return causal_mask & document_mask | |
def dense_to_ordered(dense_blockmask: Tensor): | |
num_blocks = dense_blockmask.sum(dim=-1, dtype=torch.int32) | |
indices = dense_blockmask.argsort(dim=-1, descending=False, stable=True).flip(-1).to(torch.int32) | |
return num_blocks[None, None].contiguous(), indices[None, None].contiguous() | |
# manual block mask creation by @YouJiacheng | |
assert len(input_seq) % BLOCK_SIZE == 0 | |
NUM_BLOCKS = len(input_seq) // BLOCK_SIZE | |
block_idx = torch.arange(NUM_BLOCKS, dtype=torch.int32, device="cuda") | |
causal_blockmask_any = block_idx[:, None] >= block_idx | |
causal_blockmask_all = block_idx[:, None] > block_idx | |
docs_low = docs.view(-1, BLOCK_SIZE)[:, 0].contiguous() | |
docs_high = docs.view(-1, BLOCK_SIZE)[:, -1].contiguous() | |
document_blockmask_any = (docs_low[:, None] <= docs_high) & (docs_high[:, None] >= docs_low) | |
document_blockmask_all = (docs_low[:, None] == docs_high) & (docs_high[:, None] == docs_low) | |
blockmask_any = causal_blockmask_any & document_blockmask_any | |
blockmask_all = causal_blockmask_all & document_blockmask_all | |
partial_kv_num_blocks, partial_kv_indices = dense_to_ordered(blockmask_any & ~blockmask_all) | |
full_kv_num_blocks, full_kv_indices = dense_to_ordered(blockmask_all) | |
def build_bm(window_size_blocks: Tensor) -> BlockMask: | |
return BlockMask.from_kv_blocks( | |
torch.clamp_max(partial_kv_num_blocks, torch.clamp_min(window_size_blocks - full_kv_num_blocks, 1)), | |
partial_kv_indices, | |
torch.clamp_max(full_kv_num_blocks, window_size_blocks - 1), | |
full_kv_indices, | |
BLOCK_SIZE=BLOCK_SIZE, | |
mask_mod=document_causal, | |
) | |
# Long-short SWA block masks by @leloykun & @YouJiacheng, adapated from suggestion by @Grad62304977, following Gemma 2 paper | |
return build_bm(sliding_window_num_blocks), build_bm(sliding_window_num_blocks // 2) | |
def forward(self, input_seq: Tensor, target_seq: Tensor, sliding_window_num_blocks: Tensor): | |
assert input_seq.ndim == 1 | |
ve = [value_embed(input_seq) for value_embed in self.value_embeds] | |
# 012 ... 012 structure on token value embeddings by @YouJiacheng, improved on @leloykun's U-net structure | |
ve = [ve[0], ve[1], ve[2]] + [None] * (len(self.blocks) - 6) + [ve[0], ve[1], ve[2]] | |
assert len(ve) == len(self.blocks) | |
long_bm, short_bm = self.create_blockmasks(input_seq, sliding_window_num_blocks) | |
block_masks = [long_bm, short_bm, short_bm, short_bm, long_bm, short_bm, short_bm, short_bm, short_bm, short_bm, short_bm, long_bm, short_bm, short_bm, short_bm, long_bm] | |
assert len(block_masks) == len(self.blocks) | |
x = x0 = norm(self.embed(input_seq)[None]) # use of norm here by @Grad62304977 | |
skip_connections = [] | |
skip_map = { | |
9: 6, | |
10: 4, | |
11: 2, | |
} | |
skip_weights = self.scalars[:len(self.blocks)] | |
lambdas = self.scalars[1 * len(self.blocks): 3 * len(self.blocks)].view(-1, 2) | |
sa_lambdas = self.scalars[3 * len(self.blocks): 5 * len(self.blocks)].view(-1, 2) | |
for i in range(len(self.blocks)): | |
if i in skip_map: | |
x = x + skip_weights[skip_map[i]] * skip_connections[skip_map[i]] | |
x = self.blocks[i](x, ve[i], x0, block_masks[i], lambdas[i], sa_lambdas[i]) | |
skip_connections.append(x) | |
x = norm(x) | |
if self.training: | |
logits: Tensor = F.linear(x.flatten(end_dim=1), self.lm_head_w.bfloat16()).float() | |
loss = F.cross_entropy(15 * logits * torch.rsqrt(logits.square() + 225), target_seq) | |
return loss | |
loss = 0 | |
for i in range(4): | |
logits: Tensor = F.linear(x.flatten(end_dim=1).chunk(4)[i], self.lm_head_w.bfloat16()).float() | |
loss += F.cross_entropy(15 * logits * torch.rsqrt(logits.square() + 225), target_seq.chunk(4)[i]) / 4 | |
return loss | |
# ----------------------------------------------------------------------------- | |
# Our own simple Distributed Data Loader | |
def _load_data_shard(file: Path): | |
header = torch.from_file(str(file), False, 256, dtype=torch.int32) # header is 256 int32 | |
assert header[0] == 20240520, "magic number mismatch in the data .bin file" | |
assert header[1] == 1, "unsupported version" | |
num_tokens = int(header[2]) # number of tokens (claimed) | |
with file.open("rb", buffering=0) as f: | |
tokens = torch.empty(num_tokens, dtype=torch.uint16, pin_memory=True) # avoid pin_memory copy by @YouJiacheng | |
f.seek(256 * 4) | |
nbytes = f.readinto(tokens.numpy()) # avoid bytes->array copy by @YouJiacheng | |
assert nbytes == 2 * num_tokens, "number of tokens read does not match header" | |
return tokens | |
def distributed_data_generator(filename_pattern: str, batch_size: int, rank : int, world_size : int): | |
files = sorted(Path.cwd().glob(filename_pattern)) | |
assert batch_size % world_size == 0 | |
local_batch_size = batch_size // world_size | |
file_iter = iter(files) # use itertools.cycle(files) instead if you want to do multi-epoch training | |
tokens, pos = _load_data_shard(next(file_iter)), 0 | |
while True: | |
if pos + batch_size + 1 >= len(tokens): | |
tokens, pos = _load_data_shard(next(file_iter)), 0 | |
buf = tokens[pos + rank * local_batch_size:][:local_batch_size + 1] | |
inputs = buf[:-1].to(device="cuda", dtype=torch.int32, non_blocking=True) # no sync on host side; | |
targets = buf[1:].to(device="cuda", dtype=torch.int64, non_blocking=True) # H2D in another stream isn't helpful. | |
pos += batch_size | |
yield inputs, targets | |
# ----------------------------------------------------------------------------- | |
# int main | |
@dataclass | |
class Hyperparameters: | |
# data | |
train_files = "data/fineweb10B/fineweb_train_*.bin" # input .bin to train on | |
val_files = "data/fineweb10B/fineweb_val_*.bin" # input .bin to eval validation loss on | |
val_tokens = 10485760 # how many tokens of validation data? it's important to keep this fixed for consistent comparisons | |
train_seq_len = 64*1024 # FlexAttention sequence length | |
val_seq_len = 4*64*1024 # FlexAttention sequence length for validation | |
# optimization | |
num_iterations = 5960 # number of iterations to run | |
cooldown_frac = 0.7 # fraction of training spent cooling down the learning rate | |
# architecture | |
vocab_size = 50257 | |
# evaluation and logging | |
val_loss_every = 125 # every how many steps to evaluate val loss? 0 for only at the end | |
save_checkpoint = False | |
args = Hyperparameters() | |
run_id = int(os.environ.get("RUN_ID", 0)) | |
# torchrun sets these env variables | |
rank = int(os.environ["RANK"]) | |
world_size = int(os.environ["WORLD_SIZE"]) | |
assert world_size == 8 # this code is designed for 8xH100 | |
assert torch.cuda.is_available() | |
device = torch.device("cuda", int(os.environ["LOCAL_RANK"])) | |
torch.cuda.set_device(device) | |
dist.init_process_group(backend="nccl", device_id=device) | |
dist.barrier() | |
master_process = (rank == 0) # this process will do logging, checkpointing etc. | |
# begin logging | |
if master_process: | |
run_id_full = f"{run_id:03d}_{uuid.uuid4()}" | |
os.makedirs("logs", exist_ok=True) | |
logfile = f"logs/{run_id_full}.txt" | |
print(logfile) | |
def print0(s, console=False): | |
if master_process: | |
with open(logfile, "a") as f: | |
if console: | |
print(s) | |
print(s, file=f) | |
from torch._logging._internal import trace_structured # noqa: E402 | |
import torch._inductor.codecache # noqa: E402 | |
import torch._inductor.graph # noqa: E402 | |
def _patched_trace_structured(name, *args, **kwargs): | |
if name == "inductor_output_code": | |
match args, kwargs: | |
case (metadata_fn, *_), _: | |
filename = metadata_fn().get("filename", "Unknown") | |
case _, {"metadata_fn": metadata_fn}: | |
filename = metadata_fn().get("filename", "Unknown") | |
case _: | |
filename = "Unknown" | |
print0(f"inductor_output_code: {filename}") | |
trace_structured(name, *args, **kwargs) | |
torch._inductor.codecache.trace_structured = _patched_trace_structured | |
torch._inductor.graph.trace_structured = _patched_trace_structured | |
# begin by printing this file (the Python code) | |
print0(code) | |
print0("="*100) | |
# log information about the hardware/software environment this is running on | |
print0(f"Running Python {sys.version}") | |
print0(f"Running PyTorch {torch.version.__version__} compiled for CUDA {torch.version.cuda}, with NCCL {torch.cuda.nccl.version()}") | |
def nvidia_smi(): | |
import subprocess # avoid top level import | |
return subprocess.run(["nvidia-smi"], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True).stdout | |
print0(nvidia_smi()) | |
print0("="*100) | |
######################################## | |
# Construct model and optimizer # | |
######################################## | |
model: nn.Module = GPT(vocab_size=args.vocab_size, num_layers=16, num_heads=8, model_dim=1024, | |
max_seq_len=max(args.train_seq_len, args.val_seq_len)).cuda() | |
for m in model.modules(): | |
if isinstance(m, nn.Embedding): | |
m.bfloat16() | |
for param in model.parameters(): | |
dist.broadcast(param.detach(), 0) | |
# collect the parameters to optimize | |
hidden_matrix_params = sorted((p for p in model.blocks.parameters() if p.ndim >= 2), key=lambda x: x.size(), reverse=True) | |
embed_params = [*model.embed.parameters(), *model.value_embeds.parameters()] | |
scalar_params = [model.scalars] | |
head_params: list[nn.Parameter] = [model.lm_head_w] | |
# sanity check | |
params_collections = [hidden_matrix_params, embed_params, scalar_params, head_params] | |
optimized_parameters_set = {p for params in params_collections for p in params} | |
assert optimized_parameters_set == {*model.parameters()} | |
assert len(optimized_parameters_set) == sum(len(lst) for lst in params_collections) | |
# init the optimizer(s) | |
adam_param_groups = [dict(params=head_params, lr=1/320), dict(params=embed_params, lr=0.3), dict(params=scalar_params, lr=0.015)] | |
# small adam epsilon by @YouJiacheng. this is an alternate method of fixing the world_size dependence | |
# discovered by @fernbear.bsky.social https://x.com/hi_tysam/status/1879692937589875094 | |
optimizer1 = torch.optim.AdamW(adam_param_groups, betas=(0.8, 0.95), eps=1e-10, weight_decay=0.0, fused=True) | |
optimizer2 = Muon(hidden_matrix_params, lr=0.025, momentum=0.95, rank=rank, world_size=world_size) | |
optimizers: list[torch.optim.Optimizer] = [optimizer1, optimizer2] | |
def opt_params(opt: torch.optim.Optimizer) -> list[nn.Parameter]: | |
return [p for group in opt.param_groups for p in group["params"]] | |
opt2params = {opt: opt_params(opt) for opt in optimizers} | |
for opt in optimizers: | |
for group in opt.param_groups: | |
group["initial_lr"] = group["lr"] | |
# learning rate schedule: stable then decay | |
def get_lr(step: int): | |
x = step / args.num_iterations # progress in training | |
assert 0 <= x < 1 | |
if x < 1 - args.cooldown_frac: | |
return 1.0 | |
else: | |
return (1 - x) / args.cooldown_frac | |
# attention window size schedule: linearly increase | |
@lru_cache(1) | |
def get_window_size_blocks_helper(window_size: int): | |
return torch.tensor(window_size // 128, dtype=torch.int32, pin_memory=True).cuda(non_blocking=True) | |
def get_window_size_blocks(step: int): | |
x = step / args.num_iterations # progress in training | |
assert 0 <= x <= 1 | |
# Linearly increase the block-wise sliding window size over training 128 -> 1792 | |
# increase by @fernbear.bsky.social; block-wise by @YouJiacheng | |
factor = 4 * x ** 3 - 6 * x ** 2 + 3 * x | |
window_size = next_multiple_of_n(3456 * factor, n=128) | |
return get_window_size_blocks_helper(window_size) | |
model: nn.Module = torch.compile(model, dynamic=False) | |
######################################## | |
# Warmup kernels # | |
######################################## | |
# Warmup the training kernels, then re-initialize the state so we aren't cheating | |
warmup_steps = 10 | |
initial_state = copy.deepcopy(dict(model=model.state_dict(), optimizers=[opt.state_dict() for opt in optimizers])) | |
for _ in range(warmup_steps): | |
inputs = targets = torch.randint(0, args.vocab_size, size=(args.train_seq_len,), device="cuda") | |
model(inputs.to(torch.int32), targets, get_window_size_blocks(0)).backward() | |
for param in model.parameters(): | |
dist.all_reduce(param.grad, op=dist.ReduceOp.AVG) | |
for opt in optimizers: | |
opt.step() | |
model.zero_grad(set_to_none=True) | |
model.load_state_dict(initial_state["model"]) | |
for opt, opt_state in zip(optimizers, initial_state["optimizers"]): | |
opt.load_state_dict(opt_state) | |
del initial_state | |
######################################## | |
# Training and validation # | |
######################################## | |
torch.cuda.reset_peak_memory_stats() | |
train_loader = distributed_data_generator(args.train_files, world_size * args.train_seq_len, rank, world_size) | |
training_time_ms = 0 | |
# start the clock | |
dist.barrier() | |
t0 = time.perf_counter() | |
# begin training | |
train_steps = args.num_iterations | |
for step in range(train_steps + 1): | |
last_step = (step == train_steps) | |
# --------------- VALIDATION SECTION ----------------- | |
if last_step or (args.val_loss_every > 0 and step % args.val_loss_every == 0): | |
# stop the clock | |
dist.barrier() | |
training_time_ms += 1000 * (time.perf_counter() - t0) | |
model.eval() | |
val_batch_size = world_size * args.val_seq_len | |
assert args.val_tokens % val_batch_size == 0 | |
val_steps = args.val_tokens // val_batch_size | |
val_loader = distributed_data_generator(args.val_files, val_batch_size, rank, world_size) | |
val_loss = 0 | |
with torch.no_grad(): | |
for _ in range(val_steps): | |
inputs, targets = next(val_loader) | |
val_loss += model(inputs, targets, get_window_size_blocks(step)) | |
val_loss /= val_steps | |
del val_loader | |
dist.all_reduce(val_loss, op=dist.ReduceOp.AVG) | |
print0(f"step:{step}/{train_steps} val_loss:{val_loss:.6f} train_time:{training_time_ms:.0f}ms step_avg:{training_time_ms/max(step, 1):.2f}ms", console=True) | |
model.train() | |
# start the clock again | |
dist.barrier() | |
t0 = time.perf_counter() | |
if last_step: | |
if master_process and args.save_checkpoint: | |
log = dict(step=step, code=code, model=model.state_dict(), optimizers=[opt.state_dict() for opt in optimizers]) | |
os.makedirs(f"logs/{run_id_full}", exist_ok=True) | |
torch.save(log, f"logs/{run_id_full}/state_step{step:06d}.pt") | |
# the last step only has the validation loop, so break to avoid training | |
break | |
# --------------- TRAINING SECTION ----------------- | |
inputs, targets = next(train_loader) | |
model(inputs, targets, get_window_size_blocks(step)).backward() | |
opt2futures = { | |
opt: [dist.all_reduce(p.grad, op=dist.ReduceOp.AVG, async_op=True).get_future() for p in params] | |
for opt, params in opt2params.items() | |
} | |
# set optimization hyperparameters | |
for opt in optimizers: | |
for group in opt.param_groups: | |
group["lr"] = group["initial_lr"] * get_lr(step) | |
for group in optimizer2.param_groups: | |
frac = min(step / 300, 1) # momentum warmup for muon | |
group["momentum"] = (1 - frac) * 0.85 + frac * 0.95 | |
# step the optimizers | |
for opt in optimizers: | |
torch.futures.collect_all(opt2futures[opt]).wait() | |
opt.step() | |
# null the gradients | |
model.zero_grad(set_to_none=True) | |
# logging | |
approx_training_time_ms = training_time_ms + 1000 * (time.perf_counter() - t0) | |
print0(f"step:{step+1}/{train_steps} train_time:{approx_training_time_ms:.0f}ms step_avg:{approx_training_time_ms/(step + 1):.2f}ms", console=True) | |
print0(f"peak memory allocated: {torch.cuda.max_memory_allocated() // 1024 // 1024} MiB " | |
f"reserved: {torch.cuda.max_memory_reserved() // 1024 // 1024} MiB", console=True) | |
dist.destroy_process_group() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment