Last active
September 21, 2021 13:33
-
-
Save abesmon/3ede509bbcf503170f5982aa2d2f5c21 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
for epoch in range(num_epochs): | |
for n, (real_samples, _) in enumerate(train_loader): | |
# Обучение дискриминатора | |
optimizer_discriminator.zero_grad() | |
# Данные для тренировки дискриминатора | |
real_samples = real_samples.to(device=device) | |
real_samples_labels = torch.ones((batch_size, 1)).to(device=device) | |
real_outp = discriminator(real_samples) | |
real_loss = loss_function(real_outp, real_samples_labels) | |
latent_space_samples = torch.randn((batch_size, seed_size, 1, 1)).to( | |
device=device) | |
generated_samples = generator(latent_space_samples) | |
generated_samples_labels = torch.zeros((batch_size, 1)).to( | |
device=device) | |
output_discriminator = discriminator(generated_samples) | |
gen_loss = loss_function(output_discriminator, generated_samples_labels) | |
total_loss = real_loss + gen_loss | |
total_loss.backward() | |
optimizer_discriminator.step() | |
# Обучение генератора | |
generator.zero_grad() | |
# Данные для обучения генератора | |
latent_space_samples = torch.randn((batch_size, seed_size, 1, 1)).to( | |
device=device) | |
generated_samples = generator(latent_space_samples) | |
output_discriminator_generated = discriminator(generated_samples) | |
loss_generator = loss_function( | |
output_discriminator_generated, real_samples_labels) | |
loss_generator.backward() | |
optimizer_generator.step() | |
# Показываем loss | |
if n == batch_size - 1: | |
clear_output() | |
print(f"Epoch: {epoch} Loss D.: {total_loss} | Loss G.:{loss_generator}") | |
# plt.imshow(generated_samples[0].cpu().detach().reshape(64, 64), cmap="gray_r") | |
fig, ax = plt.subplots(figsize=(8, 8)) | |
ax.set_xticks([]); ax.set_yticks([]) | |
ax.imshow(make_grid(generated_samples.cpu().detach(), nrow=8).permute(1, 2, 0)) | |
# plt.imshow(generated_samples[0].cpu().detach().permute(1, 2, 0)) | |
# plt.imshow(train_loader.real_samples.permute(1, 2, 0)) | |
plt.show() |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
for epoch in range(num_epochs): | |
for n, (real_samples, mnist_labels) in enumerate(train_loader): | |
# Данные для тренировки дискриминатора | |
real_samples = real_samples.to(device=device) | |
real_samples_labels = torch.ones((batch_size, 1)).to( | |
device=device) | |
latent_space_samples = torch.randn((batch_size, 100)).to( | |
device=device) | |
generated_samples = generator(latent_space_samples) | |
generated_samples_labels = torch.zeros((batch_size, 1)).to( | |
device=device) | |
all_samples = torch.cat((real_samples, generated_samples)) | |
all_samples_labels = torch.cat( | |
(real_samples_labels, generated_samples_labels)) | |
# Обучение дискриминатора | |
discriminator.zero_grad() | |
output_discriminator = discriminator(all_samples) | |
loss_discriminator = loss_function( | |
output_discriminator, all_samples_labels) | |
loss_discriminator.backward() | |
optimizer_discriminator.step() | |
# Данные для обучения генератора | |
latent_space_samples = torch.randn((batch_size, 100)).to( | |
device=device) | |
# Обучение генератора | |
generator.zero_grad() | |
generated_samples = generator(latent_space_samples) | |
output_discriminator_generated = discriminator(generated_samples) | |
loss_generator = loss_function( | |
output_discriminator_generated, real_samples_labels) | |
loss_generator.backward() | |
optimizer_generator.step() | |
# Показываем loss | |
if n == batch_size - 1: | |
print(f"Epoch: {epoch} Loss D.: {loss_discriminator} | Loss G.:{loss_generator}") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment