Skip to content

Instantly share code, notes, and snippets.

@abraker95
Created March 30, 2025 19:49
Show Gist options
  • Save abraker95/18be9adf40f024ad4babba92e97b8d42 to your computer and use it in GitHub Desktop.
Save abraker95/18be9adf40f024ad4babba92e97b8d42 to your computer and use it in GitHub Desktop.
time_to_fc_v2
Manual work debugging the damn thing /(>_<)\
'''
@ 0.5 prob & max_misses = 0
hit 1: 100 ms Time to fc: E[ 0 + 100, 0.5] = 200 actual: 200 ms
hit 2: 100 ms Time to fc: E[200 + 100, 0.5] = 600 actual: 600 ms
hit 3: 100 ms Time to fc: E[600 + 100, 0.5] = 1400 actual: 1400 ms
@ max_misses = 1
prob of pass note 1 = not (P(miss note 1) and P(miss == 1))
P(hit note 1) = 0.5
P(miss note 1) = 1 - P(hit note 1) = 0.5
P(misses == 1) = nCr(note, max_misses)/sum(m: 0 -> max_misses, nCr(note, m)) = nCr(0, 1)/(nCr(0, 0) + nCr(0, 1)) = 0.0
Total: [] -> 0
0 miss = [] -> 0
1 miss = [] -> 0
not (P(miss note 1) and P(miss == 1)) = 1 - (0.5*0.0) = 1.0 - 0.0 = 1.0
E[100, P(pass note 1)] = E[100, 1.0]
prob of pass note 2 = not (P(hit note 2) and P(miss == 1))
P(hit note 2) = 0.5
P(miss note 2) = 1 - P(hit note 2) = 0.5
P(misses == 1) = nCr(note, max_misses)/sum(m: 0 -> max_misses, nCr(note, m)) = nCr(1, 1)/(nCr(1, 0) + nCr(1, 1)) = 0.5
Total: [0], [1] -> 2
0 miss = [0] -> 1/2
1 miss = [1] -> 1/2
not (P(miss note 1) and P(miss == 1)) = 1 - (0.5*0.5) = 1 - 0.25 = 0.75
E[100, P(pass note 2)] = E[100, 0.75]
prob of pass note 3 = not (P(hit note 3) and P(miss == 1))
P(hit note 3) = 0.5
P(miss note 3) = 1 - P(hit note 3) = 0.5
P(misses == 1) = nCr(note, max_misses)/sum(m: 0 -> max_misses, nCr(note, m)) = nCr(2, 1)/(nCr(2, 0) + nCr(2, 1)) = 0.6666
Total: [0, 0], [1, 0], [0, 1] -> 3
0 miss = [0, 0] -> 1/3
1 miss = [1, 0], [0, 1] -> 2/3
2 miss = [] -> 0/3
not (P(miss note 3) and P(miss == 1)) = 1 - (0.5*0.6666) = 1 - 0.3333 = 0.6666
E[100, P(pass note 3)] = E[100, 0.666‬]
@ 0.5 prob & max_misses = 1
hit 1: 100 ms Time to fc: E[100, 1.0] = 100 actual: 100 ms
hit 2: 100 ms Time to fc: E[100 + 100, 0.75] = 266.666 actual: 266.66 ms
hit 2: 100 ms Time to fc: E[266.666 + 100, 0.666] = 550 actual: 550 ms
total FC time:
E[ E[ E[ 100, 1.0 ] + 100, 0.75 ] + 100, 0.666‬ ]
@ max_misses = 2
prob of pass note 1 = not (P(miss note 1) and P(miss == 2))
P(hit note 1) = 0.5
P(miss note 1) = 1 - P(hit note 1) = 0.5
P(misses == 2) = nCr(note, max_misses)/sum(m: 0 -> max_misses, nCr(note, m)) = nCr(0, 2)/(nCr(0, 0) + nCr(0, 1) + nCr(0, 2)) = 0.0
Total: [] -> 0
0 miss = [] -> 0
1 miss = [] -> 0
not (P(miss note 1) and P(miss == 2)) = 1 - (0.5*0.0) = 1.0 - 0.0 = 1.0
E[100, P(pass note 1)] = E[100, 1.0]
prob of pass note 2 = not (P(hit note 2) and P(miss == 2))
P(hit note 2) = 0.5
P(miss note 2) = 1 - P(hit note 2) = 0.5
P(misses == 2) = nCr(note, max_misses)/sum(m: 0 -> max_misses, nCr(note, m)) = nCr(1, 2)/(nCr(1, 0) + nCr(1, 1) + nCr(1, 2)) = 0.0
Total: [0], [1] -> 2
0 miss = [0] -> 1/2
0.5
1 miss = [1] -> 1/2
0.5
2 miss = [] -> 0/2
0.0
0.0/(0.5 + 0.5 + 0.0) = 0.0
not (P(miss note 1) and P(miss == 1)) = 1 - (0.5*0.0) = 1.0 - 0.0 = 1.0
E[100, P(pass note 2)] = E[100, 1.0]
prob of pass note 3 = not (P(hit note 3) and P(miss == 2))
P(hit note 3) = 0.5
P(miss note 3) = 1 - P(hit note 3) = 0.5
P(misses == 2) = nCr(note, max_misses)/sum(m: 0 -> max_misses, nCr(note, m)) = nCr(2, 2)/(nCr(2, 0) + nCr(2, 1) + nCr(2, 2)) = 0.25
0 miss = [0, 0]
0.5*0.5 = 0.25
1 miss = [1, 0], [0, 1]
0.5*0.5 = 0.25
0.5*0.5 = 0.25
2 miss = [1, 1]
0.5*0.5 = 0.25
0.25/(0.25 + 0.25 + 0.25 + 0.25) = 0.25/1.0 = 0.25
not (P(miss note 3) and P(miss == 2)) = 1 - (0.5*0.25) = 1 - 0.125 = 0.875
E[100, P(pass note 3)] = E[100, 0.875‬]
prob of pass note 4 = not (P(hit note 4) and P(miss == 2))
P(hit note 4) = 0.5
P(miss note 4) = 1 - P(hit note 4) = 0.5
P(misses == 2) = nCr(note, max_misses)/sum(m: 0 -> max_misses, nCr(note, m)) = nCr(3, 2)/(nCr(3, 0) + nCr(3, 1) + nCr(3, 2)) = 0.42857142857142855
Total: [0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 0], [1, 0, 1], [0, 1, 1] -> 7
0 miss = [0, 0, 0] -> 1/7
0.5*0.5*0.5 = 0.125
1 miss = [1, 0, 0], [0, 1, 0], [0, 0, 1] -> 3/7
0.5*0.5*0.5 = 0.125
0.5*0.5*0.5 = 0.125
0.5*0.5*0.5 = 0.125
2 miss = [1, 1, 0], [1, 0, 1], [0, 1, 1] -> 3/7
0.5*0.5*0.5 = 0.125
0.5*0.5*0.5 = 0.125 => 0.375
0.5*0.5*0.5 = 0.125
0.375/(0.125 + 0.125 + 0.125 + 0.125 + 0.125 + 0.125 + 0.125) = 0.375/0.875 = 0.429
not (P(miss note 3) and P(miss == 2)) = 1 - (0.5*0.429) = 1 - 0.214 = 0.785
E[100, P(pass note 3)] = E[100, 0.785‬]
@ 0.5 prob & max_misses = 2
hit 1: 100 ms Time to fc: E[ 0 + 100, 1.0] = 100 actual: 100 ms
hit 2: 100 ms Time to fc: E[100 + 100, 1.0] = 200 actual: 200 ms
hit 3: 100 ms Time to fc: E[200 + 100, 0.875‬] = 342.857 actual: 342.857 ms
hit 4: 100 ms Time to fc: E[342.857 + 100, 0.785‬] = 563.636 actual: 563.636 ms
total FC time:
E[ E[ E[ E[ 100, 1.0 ] + 100, 1.0 ] + 100, 0.875‬ ] + 100, 0.785 ]
@ max_misses = 2
prob of pass note 1 = not (P(miss note 1) and P(miss == 2))
P(hit note 1) = 0.0
P(miss note 1) = 1 - P(hit note 1) = 1.0
P(misses == 2) = nCr(note, max_misses)/sum(m: 0 -> max_misses, nCr(note, m)) = nCr(0, 2)/(nCr(0, 0) + nCr(0, 1) + nCr(0, 2)) = 0.0
Total: [] -> 0
0 miss = [] -> 0
1 miss = [] -> 0
0.0
not (P(miss note 1) and P(miss == 2)) = 1 - (1.0*0.0) = 1 - 0.0 = 1.0
E[100, P(pass note 1)] = E[100, 1.0]
prob of pass note 2 = not (P(hit note 2) and P(miss == 2))
P(hit note 2) = 0.0
P(miss note 2) = 1 - P(hit note 2) = 1.0
P(misses == 2) = nCr(note, max_misses)/sum(m: 0 -> max_misses, nCr(note, m)) = nCr(1, 2)/(nCr(1, 0) + nCr(1, 1) + nCr(1, 2)) = 0.0
Total: [0], [1] -> 2
0 miss = [0] -> 1/2
0.0
1 miss = [1] -> 1/2
1.0
2 miss = [] -> 0/2
0.0
0.0/(0.0 + 1.0 + 0.0) = 0.0
not (P(miss note 1) and P(miss == 1)) = 1 - (1.0*0.0) = 1.0 - 0.0 = 1.0
E[100, P(pass note 2)] = E[100, 1.0]
prob of pass note 3 = not (P(hit note 3) and P(miss == 2))
P(hit note 3) = 0.5
P(miss note 3) = 1 - P(hit note 3) = 0.5
P(misses == 2) = nCr(note, max_misses)/sum(m: 0 -> max_misses, nCr(note, m)) = nCr(2, 2)/(nCr(2, 0) + nCr(2, 1) + nCr(2, 2)) = 0.25
Total: [0, 0], [1, 0], [0, 1], [1, 1] -> 4
0 miss = [0, 0] -> 1/4
0.0*0.0 * 1 = 0.0
1 miss = [1, 0], [0, 1] -> 2/4 = 1/2
0.0*0.0 = 0.0
0.0*0.0 = 0.0
2 miss = [1, 1] -> 1/4
1.0*1.0 * 1 = 1.0
1.0/(0.0 + 0.0 + 0.0 + 1.0) = 1.0
not (P(miss note 3) and P(miss == 2)) = 1 - (0.5*1.0) = 1 - 0.5 = 0.5
E[100, P(pass note 3)] = E[100, 0.5‬]
@ max_misses = 2
hit 1: 100 ms Time to fc: E[ 0 + 100, 0.0] = 100 actual: 100 ms
hit 2: 100 ms Time to fc: E[100 + 100, 0.0] = 200 actual: 200 ms
hit 3: 100 ms Time to fc: E[200 + 100, 0.5‬] = 600 actual: 600 ms
total FC time:
E[ E[ E[ 100, 1.0 ] + 100, 1.0 ] + 100, 0.5‬ ]
((100/1.0 + 100)/1.0 + 100)/0.5
(100 + 100*1.0 + 100*1.0*1.0)/(1.0*1.0*0.5)
100/(1.0*1.0*0.5) + 100/(1.0*0.5) + 100/(0.5)
100/0.5 + 100/0.5 + 100/0.5
'''
"""
Authors: abraker, Joseph Ireland, Tr3sLeches
"""
import random
import itertools
from scipy.special import comb # nCr
from scipy.special import factorial
from scipy.stats import norm
import numpy as np
import time
import datetime
from poibin import PoiBin
class PoissonBinomialApprox:
def __init__(self):
self.mu = 0
self.var = 0
self.gamma = 0
def set_p(self, pList):
self.mu = np.sum(pList)
fail = 1 - pList
self.var = np.sum(pList * fail)
self.gamma = np.sum(pList * fail * (1 - 2*pList))
def add(self, p):
self.mu += p
self.var += p * (1 - p)
self.gamma += p * (1 - p) * (1 - 2*p)
def cdf(self):
sigma = np.sqrt(self.var)
v = self.gamma/(6 * sigma**3)
mu = self.mu
def func(n):
k = (n + 0.5 - mu)/sigma
result = norm.cdf(k) + v*(1 - k*k) * norm.pdf(k)
return max(0, min(1, result))
return func
class PoissonBinomialCumulative:
def __init__(self, pList):
self.mu = np.add.accumulate(pList) # mean
fail = 1 - pList
self.var = np.add.accumulate(pList * fail) # variance
self.gamma = np.add.accumulate(pList * fail * (1 - 2*pList))
self.sigma = np.sqrt(self.var)
self.v = self.gamma/(6 * self.sigma**3) # skewness
def cdf(self, n):
k = (n + 0.5 - self.mu)/self.sigma
result = norm.cdf(k) + self.v*(1 - k*k) * norm.pdf(k)
return np.maximum(0, np.minimum(1, result))
class ApproxPoiBin():
def __init__(self, probs):
self.probs = probs
self.mean = np.sum(self.probs)
self.var = np.sum(self.probs * (1 - self.probs))
self.skew = np.sum(self.probs * (1 - self.probs) * (1 - 2*self.probs))/(np.sqrt(self.var)**3)
self.kurtosis = np.sum(self.probs * (1 - 6*(1 - self.probs)*self.probs)/(np.sqrt(self.var)**4))
self.offset = ApproxPoiBin.mid_cdf(-self.skew/2)
self.model_skew = -self.skew/2
def cdf(self, x):
x = (1/self.var**0.5)*(x - self.mean + 0.5) + self.offset
a = self.model_skew
asq = (a*a)**(1/2)
ax = (a*a*x*x)
a1 = a*a - 1
term1 = 1/(x*x + 1)**0.5
term2 = (a*(ax + 1)**0.5)/a1 + x
term3 = (a*asq)/a1
return 0.5*(term1*term2 - term3 + 1)
class PoiBin2():
def __init__(self, probs):
omega = 2 * np.pi / (len(probs) + 1)
half_number_trials = int(len(probs) / 2 + len(probs) % 2)
num_values = min(250, half_number_trials)
idx_array = np.arange(1, num_values + 1)
exp_value = np.exp(omega * idx_array * 1j)
# Multiplying each probability by each complex number forming an arc of a circle
xy = 1 - probs + probs*exp_value.reshape(num_values, 1)
argz_sum = np.arctan2(xy.imag, xy.real).sum(axis=1)
d_value = np.zeros(num_values)
d_value = np.abs(xy).prod(axis=1)
chi = np.zeros(len(probs) + 1, dtype=complex)
chi[0] = 1
chi[1:num_values + 1] = d_value*np.exp(argz_sum * 1j)
chi[half_number_trials + 1:len(probs) + 1] = np.conjugate(chi[1:len(probs) - half_number_trials + 1] [::-1])
chi /= len(probs) + 1
self.pmf = np.fft.fft(chi).real
self.cmf = np.add.accumulate(self.pmf)
def pdf(self, x):
return self.pmf[x]
def cdf(self, x):
return self.cmf[x]
@staticmethod
def mid_cdf(a):
term1 = a*a - a**6
term2 = 2*abs(a**3)*(a**6 - a**4 - a*a + 1)**0.5
term3 = 3*a**6 - a**4 - 3*a*a + 1
if 1 < a: return ((term1 + term2)/term3)**0.5
if 0 <= a < 1: return ((term1 - term2)/term3)**0.5
if -1 < a < 0: return -((term1 - term2)/term3)**0.5
if a < -1: return -((term1 + term2)/term3)**0.5
return np.nan
class PoissonBinomialTr3sleches:
def __init__(self, pList):
self.mu = np.add.accumulate(pList) # mean
self.var = np.add.accumulate(pList * (1 - pList)) # variance
self.sigma = np.sqrt(self.var) # standard deviation
self.theta = self.mu/self.sigma*np.sqrt(self.mu)
self.lam = 1 - np.sqrt(self.mu/self.var)
def cdf(self, x):
def pdf(n):
result = self.theta*np.power(self.theta + self.lam*n, n - 1)*np.exp(-self.theta - self.lam*n)/factorial(n)
return np.maximum(0, np.minimum(1, result))
result = 0
for n in range(x + 1):
result += pdf(n)
return np.maximum(0, np.minimum(1, result))
# Used for debugging
def calc_one_hit(time, hit_prob):
return time/hit_prob
# Unused
def calc_prob_misses(note, misses):
# nCr(note, misses)/sum(m: 0 -> misses, nCr(note, m))
return comb(note, misses)/np.sum(comb(note, np.arange(misses + 1)))
def calc_prob_misses_orig(hit_probs, misses):
total_mask = np.asarray(list(map(list, itertools.product([0, 1], repeat=len(hit_probs)))))
total_mask = total_mask[np.count_nonzero(total_mask, axis=1) <= misses]
misses_mask = total_mask[np.count_nonzero(total_mask, axis=1) == misses]
prob_total = np.sum(np.prod(np.abs(total_mask - hit_probs), axis=1))
prob_misses = np.sum(np.prod(np.abs(misses_mask - hit_probs), axis=1))
try: return prob_misses/prob_total
except ZeroDivisionError: return 1.0
def calc_prob_misses_exact(hit_probs, misses):
if len(hit_probs) < misses: return 0
elif misses == 0: return 1
pb = PoiBin(1 - hit_probs)
prob_reach_note = pb.cdf([misses])[0]
prob_at_max_misses = pb.pmf([misses])[0]
try: return prob_at_max_misses/prob_reach_note
except ZeroDivisionError: return 1.0
def calc_prob_misses_approx(hit_probs, misses):
if len(hit_probs) < misses: return 0
elif misses == 0: return 1
pb = PoissonBinomialApprox()
pb.set_p(1 - hit_probs)
cdf = pb.cdf()
prob_reach_note = cdf(misses)
prob_at_max_misses = prob_reach_note - cdf(misses - 1)
try: return prob_at_max_misses/prob_reach_note
except ZeroDivisionError: return 1.0
def calc_all_prob_misses_approx(hit_probs, misses):
pb = PoissonBinomialApprox()
yield 0
for i, prob in enumerate(hit_probs[:-1]):
pb.add(1 - prob)
if (i + 1 < misses):
yield 0
continue
cdf = pb.cdf()
prob_reach_note = cdf(misses)
prob_at_max_misses = prob_reach_note - cdf(misses - 1)
try: yield prob_at_max_misses/prob_reach_note
except ZeroDivisionError: yield 1.0
def calc_all_prob_misses_numpy(hit_probs, misses):
pb = PoissonBinomialCumulative(1 - hit_probs[:-1])
prob_reach_note = pb.cdf(misses)
#print('prob_reach_note', prob_reach_note)
prob_at_max_misses = prob_reach_note - pb.cdf(misses - 1)
#print('prob_at_max_misses', prob_at_max_misses)
result = prob_at_max_misses / prob_reach_note
result[np.isnan(result)] = 1
#print('result', result)
result[:misses - 1] = 0
result = np.insert(result, 0, 0)
return result
def calc_all_prob_misses_numpy_tr3sLeches(hit_probs, misses):
pb = PoissonBinomialTr3sleches(1 - hit_probs[:-1])
prob_reach_note = pb.cdf(misses)
#print('prob_reach_note', prob_reach_note)
prob_at_max_misses = prob_reach_note - pb.cdf(misses - 1)
#print('prob_at_max_misses', prob_at_max_misses)
result = prob_at_max_misses / prob_reach_note
result[np.isnan(result)] = 1
#print('result', result)
result[:misses - 1] = 0
result = np.insert(result, 0, 0)
return result
def calc_prob_reach_note_exact(miss_probs, misses):
if len(miss_probs) < misses: return 1
return PoiBin(miss_probs).cdf([misses])[0] # prob_reach_note
def calc_prob_reach_note_poibin_approx(miss_probs, misses):
if len(miss_probs) < misses: return 1
return PoiBin2(miss_probs).cdf(misses) # prob_reach_note
def calc_prob_reach_note_exact_numpy(miss_probs, misses):
if miss_probs.shape[0] < misses: return 1
return PoiBin(miss_probs).cdf([misses])[0] # prob_reach_note
def calc_fc_time(times, hit_probs, max_misses, prob_misses_at_max):
prob_fail = (1 - hit_probs)*prob_misses_at_max
prob_success = 1 - prob_fail
# [::-1] reverses the array
prob_success_til_end = np.cumprod(prob_success[::-1])[::-1]
return np.sum(times/prob_success_til_end)
def calc_fc_time_orig(times, hit_probs, max_misses=0):
prob_misses_at_max = [ calc_prob_misses_orig(hit_probs[:k], max_misses) for k in range(len(hit_probs)) ] if max_misses else 1
return calc_fc_time(times, hit_probs, max_misses, prob_misses_at_max)
def calc_fc_time_exact(times, hit_probs, max_misses=0):
prob_misses_at_max = [ calc_prob_misses_exact(hit_probs[:k], max_misses) for k in range(len(hit_probs)) ] if max_misses else 1
return calc_fc_time(times, hit_probs, max_misses, prob_misses_at_max)
def calc_fc_time_from_playtime_exact(times, miss_probs, max_misses):
prob_reach_note = [ calc_prob_reach_note_exact(miss_probs[:k], max_misses) for k in range(len(miss_probs)) ]
prob_success = PoiBin(miss_probs).cdf([max_misses])[0]
return np.sum(times*prob_reach_note)/prob_success
def calc_fc_time_from_playtime_poibin_approx(times, miss_probs, max_misses):
#prob_reach_note = [ calc_prob_reach_note_poibin_approx(miss_probs[:k], max_misses) for k in range(len(miss_probs)) ]
prob_reach_note = [ (PoiBin2(miss_probs[:k]).cdf(max_misses) if k >= misses else 1) for k in range(len(hit_probs)) ]
prob_success = PoiBin2(miss_probs).cdf(max_misses)
return np.sum(times*prob_reach_note)/prob_success
def calc_fc_time_from_playtime_poibin_approx_numba(times, miss_probs, max_misses):
#prob_reach_note = [ calc_prob_reach_note_poibin_approx(miss_probs[:k], max_misses) for k in range(len(miss_probs)) ]
prob_reach_note = [ (PoiBin2(miss_probs[:k]).cdf(max_misses) if k >= misses else 1) for k in range(len(hit_probs)) ]
prob_success = PoiBin2(miss_probs).cdf(max_misses)
return np.sum(times*prob_reach_note)/prob_success
def calc_fc_time_approx(times, hit_probs, max_misses=0):
prob_misses_at_max = [ calc_prob_misses_approx(hit_probs[:k], max_misses) for k in range(len(hit_probs)) ] if max_misses else 1
return calc_fc_time(times, hit_probs, max_misses, prob_misses_at_max)
def calc_fc_time_from_playtime_numpy_exact(times, miss_probs, max_misses):
def get_missprobs(data):
data = np.vstack([data]*(len(data) + 1))
out = np.zeros((len(data) - 1, len(data) - 1))
inds = np.mask_indices(data.shape[1], np.tril, -1)
out[inds] = data[inds]
return out
prob_reach_note = np.apply_along_axis(calc_prob_reach_note_exact_numpy, 1, get_missprobs(miss_probs), max_misses)
prob_success = PoiBin(miss_probs).cdf([max_misses])[0]
return np.sum(times*prob_reach_note)/prob_success
def calc_fc_time_approx_fast(times, hit_probs, max_misses=0):
prob_misses_at_max = [ p for p in calc_all_prob_misses_approx(hit_probs, max_misses) ] if max_misses else 1
return calc_fc_time(times, hit_probs, max_misses, prob_misses_at_max)
def calc_fc_time_approx_numpy(times, hit_probs, max_misses=0):
prob_misses_at_max = calc_all_prob_misses_numpy(hit_probs, max_misses) if max_misses else 1
return calc_fc_time(times, hit_probs, max_misses, prob_misses_at_max)
def calc_fc_time_approx_numpy_tr3sleches(times, hit_probs, max_misses=0):
prob_misses_at_max = calc_all_prob_misses_numpy_tr3sLeches(hit_probs, max_misses) if max_misses else 1
return calc_fc_time(times, hit_probs, max_misses, prob_misses_at_max)
def calc_fc_time_from_playtime(times, miss_probs, max_misses):
pb = PoissonBinomialCumulative(miss_probs)
cdf = pb.cdf(misses)
prob_success = cdf[-1]
prob_reach_note = cdf[:-1]
prob_reach_note[:misses-1] = 1
prob_reach_note = np.insert(prob_reach_note, 0, 1)
return np.sum(times*prob_reach_note)/prob_success
def sim(times, hit_probs, max_misses=0):
# Simulation
random.seed()
trials = 1000
time_wait_avg = 0
trial = 0
misses = 0
while trial < trials:
time_wait = 0
note = 0
misses = 0
while note < len(hit_probs):
time_wait += times[note]
if random.random() > hit_probs[note]:
misses += 1
if misses > max_misses:
misses = 0
note = 0
continue
note += 1
time_wait_avg += time_wait
trial += 1
return time_wait_avg/trials
def time_it(f, map_length, *args, **kwargs):
start = time.time()
time_to_fc = f(*args,**kwargs)
retries = 'N/A'
if not np.isnan(time_to_fc):
try:
time_to_fc = datetime.timedelta(milliseconds=time_to_fc)
retries = round(time_to_fc/map_length, 1)
except OverflowError:
time_to_fc = 'FOREVER'
retries = 'Infinite'
print(f'{f.__name__}: {time_to_fc} ({retries}x), elapsed: {time.time() - start}')
times = np.repeat(np.asarray([ 100, 100, 100 ]), 300)
hit_probs = np.repeat(np.asarray([ .995, .99, .98 ]), 300)
misses = 3
try: map_length = datetime.timedelta(milliseconds=float(np.sum(times)))
except OverflowError: map_length = 'Too damn long'
print(f'Map length: {map_length}, Notes: {len(times)}')
#time_it(sim, times, map_length, hit_probs, max_misses=misses) # Simulation, used as ground truth
#time_it(calc_fc_time_orig, map_length, times, hit_probs, max_misses=misses) # Exact calculation, 100% trusted to be correct
#time_it(calc_fc_time_from_playtime_numpy_exact, map_length, times, 1 - hit_probs, max_misses=misses) # Exact calculation, 100% trusted to be correct
###time_it(calc_fc_time_exact, map_length, times, hit_probs, max_misses=misses) # Exact calculation, 100% trusted to be correct
#time_it(calc_fc_time_from_playtime_exact, map_length, times, 1 - hit_probs, max_misses=misses) # Exact calculation, 100% trusted to be correct
time_it(calc_fc_time_from_playtime_poibin_approx, map_length, times, 1 - hit_probs, max_misses=misses) # Approximate estimation, trusted to be acceptable for most cases
time_it(calc_fc_time_approx, map_length, times, hit_probs, max_misses=misses) # Approximate estimation, trusted to be acceptable for most cases
time_it(calc_fc_time_approx_fast, map_length, times, hit_probs, max_misses=misses) # Approximate estimation, trusted to be acceptable for most cases
time_it(calc_fc_time_approx_numpy, map_length, times, hit_probs, max_misses=misses)
time_it(calc_fc_time_approx_numpy_tr3sleches, map_length, times, hit_probs, max_misses=misses)
#time_it(calc_fc_time_from_playtime, map_length, times, 1 - hit_probs, max_misses=misses) # Rough estimation, I wouldn't trust this
# -*- coding: utf-8 -*-
"""
Created on Tue Mar 29, 2016
Module:
poibin - Poisson Binomial Distribution
Author:
Mika Straka
Description:
Implementation of the Poisson Binomial distribution for the sum of
independent and not identically distributed random variables as described
in the reference [Hong2013]_.
Implemented method:
* ``pmf``: probability mass function
* ``cdf``: cumulative distribution function
* ``pval``: p-value (1 - cdf)
Usage:
Be ``p`` a list or NumPy array of success probabilities for ``n``
non-identically distributed Bernoulli random variables.
Import the module and create an instance of the distribution with::
>>> from poibin import PoiBin
>>> pb = PoiBin(p)
Be ``x`` a list or NumPy array of different number of successes.
To obtain the:
* probability mass function of x, use::
>>> pb.pmf(x)
* cumulative distribution function of x, use::
>>> pb.cdf(x)
* p-values of x, use::
>>> pb.pval(x)
The functions are applied component-wise and a NumPy array of the same
length as ``x`` is returned.
References:
.. [Hong2013] Yili Hong, On computing the distribution function for the Poisson
binomial distribution,
Computational Statistics & Data Analysis, Volume 59, March 2013,
Pages 41-51, ISSN 0167-9473,
http://dx.doi.org/10.1016/j.csda.2012.10.006.
MIT License
Copyright (c) 2016 Mika J. Straka
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
import collections
import numpy as np
class PoiBin(object):
"""Poisson Binomial distribution for random variables.
This class implements the Poisson Binomial distribution for Bernoulli
trials with different success probabilities. The distribution describes
thus a random variable that is the sum of independent and not identically
distributed single Bernoulli random variables.
The class offers methods for calculating the probability mass function, the
cumulative distribution function, and p-values for right-sided testing.
"""
def __init__(self, probabilities):
"""Initialize the class and calculate the ``pmf`` and ``cdf``.
:param probabilities: sequence of success probabilities :math:`p_i \\in
[0, 1] \\forall i \\in [0, N]` for :math:`N` independent but not
identically distributed Bernoulli random variables
:type probabilities: numpy.array
"""
self.success_probabilities = np.array(probabilities)
self.number_trials = self.success_probabilities.size
self.check_input_prob()
self.omega = 2 * np.pi / (self.number_trials + 1)
self.pmf_list = self.get_pmf_xi()
self.cdf_list = self.get_cdf(self.pmf_list)
# ------------------------------------------------------------------------------
# Methods for the Poisson Binomial Distribution
# ------------------------------------------------------------------------------
def pmf(self, number_successes):
"""Calculate the probability mass function ``pmf`` for the input values.
The ``pmf`` is defined as
.. math::
pmf(k) = Pr(X = k), k = 0, 1, ..., n.
:param number_successes: number of successful trials for which the
probability mass function is calculated
:type number_successes: int or list of integers
"""
self.check_rv_input(number_successes)
return self.pmf_list[number_successes]
def cdf(self, number_successes):
"""Calculate the cumulative distribution function for the input values.
The cumulative distribution function ``cdf`` for a number ``k`` of
successes is defined as
.. math::
cdf(k) = Pr(X \\leq k), k = 0, 1, ..., n.
:param number_successes: number of successful trials for which the
cumulative distribution function is calculated
:type number_successes: int or list of integers
"""
self.check_rv_input(number_successes)
return self.cdf_list[number_successes]
def pval(self, number_successes):
"""Return the p-values corresponding to the input numbers of successes.
The p-values for right-sided testing are defined as
.. math::
pval(k) = Pr(X \\geq k ), k = 0, 1, ..., n.
.. note::
Since :math:`cdf(k) = Pr(X <= k)`, the function returns
.. math::
1 - cdf(X < k) & = 1 - cdf(X <= k - 1)
& = 1 - cdf(X <= k) + pmf(X = k),
k = 0, 1, .., n.
:param number_successes: number of successful trials for which the
p-value is calculated
:type number_successes: int, numpy.array, or list of integers
"""
self.check_rv_input(number_successes)
i = 0
try:
isinstance(number_successes, collections.Iterable)
pvalues = np.array(number_successes, dtype='float')
# if input is iterable (list, numpy.array):
for k in number_successes:
pvalues[i] = 1. - self.cdf(k) + self.pmf(k)
i += 1
return pvalues
except TypeError:
# if input is an integer:
if number_successes == 0:
return 1
else:
return 1 - self.cdf(number_successes - 1)
# ------------------------------------------------------------------------------
# Methods to obtain pmf and cdf
# ------------------------------------------------------------------------------
def get_cdf(self, event_probabilities):
"""Return the values of the cumulative density function.
Return a list which contains all the values of the cumulative
density function for :math:`i = 0, 1, ..., n`.
:param event_probabilities: array of single event probabilities
:type event_probabilities: numpy.array
"""
cdf = np.empty(self.number_trials + 1)
cdf[0] = event_probabilities[0]
for i in range(1, self.number_trials + 1):
cdf[i] = cdf[i - 1] + event_probabilities[i]
return cdf
def get_pmf_xi(self):
"""Return the values of the variable ``xi``.
The components ``xi`` make up the probability mass function, i.e.
:math:`\\xi(k) = pmf(k) = Pr(X = k)`.
"""
chi = np.empty(self.number_trials + 1, dtype=complex)
chi[0] = 1
half_number_trials = int(
self.number_trials / 2 + self.number_trials % 2)
# set first half of chis:
chi[1:half_number_trials + 1] = self.get_chi(
np.arange(1, half_number_trials + 1))
# set second half of chis:
chi[half_number_trials + 1:self.number_trials + 1] = np.conjugate(
chi[1:self.number_trials - half_number_trials + 1] [::-1])
chi /= self.number_trials + 1
xi = np.fft.fft(chi)
if self.check_xi_are_real(xi):
xi = xi.real
else:
raise TypeError("pmf / xi values have to be real.")
xi += np.finfo(type(xi[0])).eps
return xi
def get_chi(self, idx_array):
"""Return the values of ``chi`` for the specified indices.
:param idx_array: array of indices for which the ``chi`` values should
be calculated
:type idx_array: numpy.array
"""
# get_z:
exp_value = np.exp(self.omega * idx_array * 1j)
xy = 1 - self.success_probabilities + \
self.success_probabilities * exp_value[:, np.newaxis]
# sum over the principal values of the arguments of z:
argz_sum = np.arctan2(xy.imag, xy.real).sum(axis=1)
# get d value:
exparg = np.log(np.abs(xy)).sum(axis=1)
d_value = np.exp(exparg)
# get chi values:
chi = d_value * np.exp(argz_sum * 1j)
return chi
# ------------------------------------------------------------------------------
# Auxiliary functions
# ------------------------------------------------------------------------------
def check_rv_input(self, number_successes):
"""Assert that the input values ``number_successes`` are OK.
The input values ``number_successes`` for the random variable have to be
integers, greater or equal to 0, and smaller or equal to the total
number of trials ``self.number_trials``.
:param number_successes: number of successful trials
:type number_successes: int or list of integers """
try:
for k in number_successes:
assert (type(k) == int or type(k) == np.int64), \
"Values in input list must be integers"
assert k >= 0, 'Values in input list cannot be negative.'
assert k <= self.number_trials, \
'Values in input list must be smaller or equal to the ' \
'number of input probabilities "n"'
except TypeError:
assert (type(number_successes) == int or \
type(number_successes) == np.int64), \
'Input value must be an integer.'
assert number_successes >= 0, "Input value cannot be negative."
assert number_successes <= self.number_trials, \
'Input value cannot be greater than ' + str(self.number_trials)
return True
@staticmethod
def check_xi_are_real(xi_values):
"""Check whether all the ``xi``s have imaginary part equal to 0.
The probabilities :math:`\\xi(k) = pmf(k) = Pr(X = k)` have to be
positive and must have imaginary part equal to zero.
:param xi_values: single event probabilities
:type xi_values: complex
"""
return np.all(xi_values.imag <= np.finfo(float).eps)
def check_input_prob(self):
"""Check that all the input probabilities are in the interval [0, 1]."""
if self.success_probabilities.shape != (self.number_trials,):
raise ValueError(
"Input must be an one-dimensional array or a list.")
if not np.all(self.success_probabilities >= 0):
raise ValueError("Input probabilities have to be non negative.")
if not np.all(self.success_probabilities <= 1):
raise ValueError("Input probabilities have to be smaller than 1.")
################################################################################
# Main
################################################################################
if __name__ == "__main__":
pass
numpy < 1.24
scipy
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment