Created
April 7, 2019 08:49
-
-
Save absent1706/8aef7068422f702c37bc87749e1afc13 to your computer and use it in GitHub Desktop.
datascience-visualize-grid-cv
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def visualize_grid_cv_params(grid_cv): | |
df = pd.DataFrame(grid_cv.cv_results_['params']) | |
df['score'] = grid_cv.cv_results_['mean_test_score'] | |
fig, axes = plt.subplots(1, len(grid_cv.param_grid), sharey=True, figsize=(15,4)) | |
i = 0 | |
for param in grid_cv.param_grid: | |
data = df.groupby(param).mean()['score'].to_dict() | |
param_values = list(data.keys()) | |
score_values = list(data.values()) | |
ax = axes[i] | |
ax.plot(param_values, score_values, marker='o') | |
ax.set_xlabel(param) | |
ax.set_ylabel('Score') | |
ax.grid(True) | |
i = i+1 | |
# Example: | |
import pandas as pd | |
import sklearn | |
from sklearn import model_selection, ensemble | |
%pylab inline | |
param_grid = { | |
'n_estimators' : [5,10,15,50,100], | |
'max_features' : [5, 10, 20, 40, 50, X.shape[1]], | |
'max_depth' : [2,5,10,20,100], | |
} | |
random_forest_estimator = ensemble.RandomForestClassifier() | |
grid_cv = model_selection.GridSearchCV(random_forest_estimator, param_grid, scoring = 'accuracy', cv=3, return_train_score=True, verbose=2) | |
grid_cv.fit(X, Y) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment