Created
November 6, 2019 01:11
Revisions
-
ageron created this gist
Nov 6, 2019 .There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,48 @@ import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout, Flatten, Conv2D from tensorflow.keras.layers import MaxPooling2D, BatchNormalization keras.backend.clear_session() np.random.seed(1000) tf.random.set_seed(1000) model = Sequential([ Conv2D(filters=96, kernel_size=(11,11), strides=(4,4), padding="same", activation="relu", input_shape=(224,224,3)), MaxPooling2D(pool_size=(3,3), strides=(2,2), padding="valid"), Conv2D(filters=256, kernel_size=(5,5), strides=(1,1), padding="same", activation="relu"), MaxPooling2D(pool_size=(3,3), strides=(2,2), padding="valid"), Conv2D(filters=384, kernel_size=(3,3), strides=(1,1), padding="same", activation="relu"), Conv2D(filters=384, kernel_size=(3,3), strides=(1,1), padding="same", activation="relu"), Conv2D(filters=256, kernel_size=(3,3), strides=(1,1), padding="same", activation="relu"), MaxPooling2D(pool_size=(3,3), strides=(2,2), padding="valid"), Flatten(), Dense(4096, activation="relu"), Dropout(0.4), Dense(4096, activation="relu"), Dropout(0.4), Dense(1000, activation="softmax") ]) model.summary() model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) #model.fit(X_train, y_train, epochs=10, # validation_data=(X_valid, y_valid))