Created
February 20, 2023 19:09
-
-
Save airicbear/5cb69d3582bc317b402ea18fa73fb832 to your computer and use it in GitHub Desktop.
DiffAugment
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from typing import Callable, Dict, List | |
import tensorflow as tf | |
from .consts import strategy | |
with strategy.scope(): | |
def diff_augment(x: tf.Tensor, | |
policy: str = '', | |
channels_first: bool = False) -> tf.Tensor: | |
if policy: | |
if channels_first: | |
x = tf.transpose(x, [0, 2, 3, 1]) | |
for p in policy.split(','): | |
for fn in AUGMENT_FNS[p]: | |
x = fn(x) | |
if channels_first: | |
x = tf.transpose(x, [0, 3, 1, 2]) | |
return x | |
def rand_brightness(x: tf.Tensor) -> tf.Tensor: | |
magnitude: tf.Tensor | |
magnitude = tf.random.uniform([tf.shape(x)[0], 1, 1, 1]) - 0.5 | |
x = x + magnitude | |
return x | |
def rand_saturation(x: tf.Tensor) -> tf.Tensor: | |
magnitude: tf.Tensor | |
x_mean: tf.Tensor | |
magnitude = tf.random.uniform([tf.shape(x)[0], 1, 1, 1]) * 2 | |
x_mean = tf.reduce_mean(x, axis=3, keepdims=True) * 0.3333333333333333333 | |
x = (x - x_mean) * magnitude + x_mean | |
return x | |
def rand_contrast(x: tf.Tensor) -> tf.Tensor: | |
magnitude: tf.Tensor | |
x_mean: tf.Tensor | |
magnitude = tf.random.uniform([tf.shape(x)[0], 1, 1, 1]) + 0.5 | |
x_mean = tf.reduce_mean(x, axis=[1, 2, 3], keepdims=True) * 5.086e-6 | |
x = (x - x_mean) * magnitude + x_mean | |
return x | |
def rand_translation(x: tf.Tensor, | |
ratio: float = 0.125) -> tf.Tensor: | |
batch_size: tf.Tensor | |
image_size: tf.Tensor | |
shift: tf.Tensor | |
translation_x: tf.Tensor | |
translation_y: tf.Tensor | |
grid_x: tf.Tensor | |
grid_y: tf.Tensor | |
batch_size = tf.shape(x)[0] | |
image_size = tf.shape(x)[1:3] | |
shift = tf.cast(tf.cast(image_size, tf.float32) * ratio + 0.5, tf.int32) | |
translation_x = tf.random.uniform([batch_size, 1], -shift[0], shift[0] + 1, dtype=tf.int32) | |
translation_y = tf.random.uniform([batch_size, 1], -shift[1], shift[1] + 1, dtype=tf.int32) | |
grid_x = tf.clip_by_value(tf.expand_dims(tf.range(image_size[0], dtype=tf.int32), 0) + translation_x + 1, | |
0, | |
image_size[0] + 1) | |
grid_y = tf.clip_by_value(tf.expand_dims(tf.range(image_size[1], dtype=tf.int32), 0) + translation_y + 1, | |
0, | |
image_size[1] + 1) | |
x = tf.gather_nd(tf.pad(x, [[0, 0], [1, 1], [0, 0], [0, 0]]), tf.expand_dims(grid_x, -1), batch_dims=1) | |
x = tf.transpose(tf.gather_nd(tf.pad(tf.transpose(x, [0, 2, 1, 3]), [[0, 0], [1, 1], [0, 0], [0, 0]]), | |
tf.expand_dims(grid_y, -1), | |
batch_dims=1), | |
[0, 2, 1, 3]) | |
return x | |
def rand_cutout(x: tf.Tensor, | |
ratio: float = 0.5) -> tf.Tensor: | |
batch_size: tf.Tensor | |
image_size: tf.Tensor | |
cutout_size: tf.Tensor | |
offset_x: tf.Tensor | |
offset_y: tf.Tensor | |
grid_batch: tf.Tensor | |
grid_x: tf.Tensor | |
grid_y: tf.Tensor | |
cutout_grid: tf.Tensor | |
mask: tf.Tensor | |
batch_size = tf.shape(x)[0] | |
image_size = tf.shape(x)[1:3] | |
cutout_size = tf.cast(tf.cast(image_size, tf.float32) * ratio + 0.5, tf.int32) | |
offset_x = tf.random.uniform([tf.shape(x)[0], 1, 1], | |
maxval=image_size[0] + (1 - cutout_size[0] % 2), | |
dtype=tf.int32) | |
offset_y = tf.random.uniform([tf.shape(x)[0], 1, 1], | |
maxval=image_size[1] + (1 - cutout_size[1] % 2), | |
dtype=tf.int32) | |
grid_batch, grid_x, grid_y = tf.meshgrid(tf.range(batch_size, dtype=tf.int32), | |
tf.range(cutout_size[0], dtype=tf.int32), | |
tf.range(cutout_size[1], dtype=tf.int32), | |
indexing='ij') | |
cutout_grid = tf.stack([grid_batch, | |
grid_x + offset_x - cutout_size[0] // 2, | |
grid_y + offset_y - cutout_size[1] // 2], | |
axis=-1) | |
mask_shape = tf.stack([batch_size, image_size[0], image_size[1]]) | |
cutout_grid = tf.maximum(cutout_grid, 0) | |
cutout_grid = tf.minimum(cutout_grid, tf.reshape(mask_shape - 1, [1, 1, 1, 3])) | |
mask = tf.maximum(1 - tf.scatter_nd(cutout_grid, | |
tf.ones([batch_size, cutout_size[0], cutout_size[1]], dtype=tf.float32), | |
mask_shape), | |
0) | |
x = x * tf.expand_dims(mask, axis=3) | |
return x | |
AUGMENT_FNS: Dict[str, List[Callable[[tf.Tensor], tf.Tensor]]] = { | |
'color': [rand_brightness, rand_saturation, rand_contrast], | |
'translation': [rand_translation], | |
'cutout': [rand_cutout], | |
} | |
def aug_fn(image: tf.Tensor) -> tf.Tensor: | |
return diff_augment(image, "color,translation,cutout") | |
def data_augment_flip(image: tf.Tensor) -> tf.Tensor: | |
image = tf.image.random_flip_left_right(image) | |
return image |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment