Created
July 24, 2020 21:40
-
-
Save ajakubek/893d3d1cada6e5f335b1f61cbd633520 to your computer and use it in GitHub Desktop.
Fast division, modulus and divisibility test with constant divider
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# The algorithms implemented in this module are based on the following article: | |
# D. Lemire, O. Kaser, and N. Kurz, Faster Remainder by Direct Computation, 2018. | |
import math | |
def div(value, reciprocal, fractional_bits): | |
return (value * reciprocal) >> fractional_bits | |
def mod(value, reciprocal, fractional_bits): | |
fractional_mask = (1 << fractional_bits) - 1 | |
return (((value * reciprocal) & fractional_mask) * divisor) >> fractional_bits | |
def is_divisible(value, reciprocal, fractional_bits): | |
fractional_mask = (1 << fractional_bits) - 1 | |
return (value * reciprocal) & fractional_mask < reciprocal | |
def generate_div_params(divisor, bits): | |
""" | |
Calculate parameters for fast fixed point division by constant value. | |
Returned value is a tuple (reciprocal, fractional_bits). | |
The following formula is used to calculate division: | |
(x / divisor) mod (1 << bits) => (x * reciprocal) >> fractional_bits | |
The following formula is used to calculate remainder: | |
fractional_mask = (1 << fractional_bits) - 1 | |
x mod divisor => (((x * reciprocal) & fractional_mask) * divisor) >> fractional_bits | |
The following formula is used to check for divisibility: | |
fractional_mask = (1 << fractional_bits) - 1 | |
x mod divisor == 0 => (x * reciprocal) & fractional_mask < reciprocal | |
""" | |
assert(0 < divisor < (1 << bits)) | |
if is_power_of_2(divisor): | |
reciprocal = 1 | |
fractional_bits = int(math.log2(divisor)) | |
else: | |
for extra_bits in range(0, bits + 1): | |
fractional_bits = bits + extra_bits | |
val_range = 1 << fractional_bits | |
reciprocal = ((val_range - 1) // divisor) + 1 | |
if divisor <= val_range % divisor + (1 << extra_bits): | |
break | |
else: | |
raise AssertionError("Failed to calculate number of fractional bits") | |
return (reciprocal, fractional_bits) | |
def is_power_of_2(x): | |
return x != 0 and x & (x - 1) == 0 | |
if __name__ == '__main__': | |
for bits in range(1, 16 + 1): | |
print("{} bits".format(bits)) | |
value_range = 1 << bits | |
for divisor in range(1, value_range): | |
reciprocal, fractional_bits = generate_div_params(divisor, bits) | |
print("x / {} mod {} => x * {} >> {}".format( | |
divisor, value_range, reciprocal, fractional_bits)) | |
for value in range(value_range): | |
assert(div(value, reciprocal, fractional_bits) == value // divisor) | |
assert(mod(value, reciprocal, fractional_bits) == value % divisor) | |
assert(is_divisible(value, reciprocal, fractional_bits) == (value % divisor == 0)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment