Last active
July 28, 2016 08:24
-
-
Save akr4/86d5612145bab8885e57320a7752a86b to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import chainer | |
from chainer import cuda, Function, gradient_check, report, training, utils, Variable, Chain | |
from chainer import datasets, iterators, optimizers, serializers | |
from chainer import Link, Chain, ChainList | |
import chainer.functions as F | |
import chainer.links as L | |
from chainer.training import extensions | |
class MyChain(Chain): | |
def __init__(self): | |
super(MyChain, self).__init__( | |
l1 = F.Linear(8, 8), | |
l2 = F.Linear(8, 8), | |
l3 = F.Linear(8, 8), | |
) | |
self.train = True | |
def __call__(self, x): | |
h = x | |
h = F.relu(self.l1(h)) | |
h = F.relu(self.l2(h)) | |
return self.l3(h) | |
x_data = np.array( [ [1,2,3,4,5,6,7,8] ],dtype=np.float32 ) | |
x = Variable(x_data) | |
y_data = np.array( [ [3,5,7,9,11,13,15,9] ],dtype=np.float32 ) | |
y = Variable(y_data) | |
model = L.Classifier(MyChain(), chainer.functions.loss.mean_squared_error.mean_squared_error) | |
model.compute_accuracy = False | |
optimizer = optimizers.SGD() | |
optimizer.setup(model) | |
print(x.data) | |
print(y.data) | |
for i in range(0, 1000): | |
optimizer.update(model, x, y) | |
test_data = np.array( [ [2,4,6,8,10,12,14,16] ],dtype=np.float32 ) | |
test = Variable(test_data) | |
test_out = model.predictor(test) | |
print("test=",test_data,"\nout=",test_out.data) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment