Last active
June 12, 2018 13:36
-
-
Save akshendra/578e3ff285f471777e971becde347873 to your computer and use it in GitHub Desktop.
Send machine related into to Cloudwatch, like RAM, disk etc
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
# Machine info on EC2 linux machines | |
import re | |
import os | |
import boto3 | |
machine = os.environ['MACHINE_NAME'] | |
region = os.environ['AWS_REGION'] | |
cloudwatch = boto3.client('cloudwatch') | |
monitor_paths = os.environ['MONITOR_DISKS'] | |
def make_matrix(name, value, unit): | |
return { | |
'MetricName': name, | |
'Dimensions': [ | |
{ | |
'Name': 'Machine', | |
'Value': machine | |
}, | |
], | |
'Value': value, | |
'Unit': unit, | |
} | |
def send_multi_metrics(metrics, unit='Count', | |
namespace='EC2/Info'): | |
data = [] | |
for key, value in metrics.items(): | |
data.append(make_matrix(key, value, unit)) | |
cloudwatch.put_metric_data( | |
Namespace=namespace, | |
MetricData=data | |
) | |
def gather_mem_info(): | |
"""Gather information about memory usage""" | |
mem_info = {} | |
pattern = re.compile(r'^(?P<key>\S*):\s*(?P<value>\d*)\s*kB') | |
with open('/proc/meminfo') as f: | |
for line in f: | |
match = pattern.match(line) | |
if match: | |
key, value = match.groups(['key', 'value']) | |
mem_info[key] = int(value) * 1024 | |
total_memory = mem_info['MemTotal'] | |
free_memory = mem_info['MemFree'] | |
cached_memory = mem_info['Cached'] | |
buffered_memory = mem_info['Buffers'] | |
used_memory = total_memory - free_memory | |
used_memory_uncached = total_memory - free_memory - cached_memory - buffered_memory | |
utilized_memory = 100 * (used_memory / total_memory) | |
utilized_memory_uncached = 100 * (used_memory_uncached / total_memory) | |
total_swap = mem_info['SwapTotal'] | |
free_swap = mem_info['SwapFree'] | |
used_swap = total_swap - free_swap | |
utilized_swap = ((100 * (used_swap / total_swap)) | |
if total_swap != 0 else 0) | |
info = { | |
'TotalMemory': total_memory, | |
'FreeMemory': free_memory, | |
'UsedMemory': used_memory, | |
'UtilizedMemory': utilized_memory, | |
'UtilizedMemoryUncached': utilized_memory_uncached, | |
'CachedMemory': mem_info['Cached'], | |
'Buffers': mem_info['Buffers'], | |
'TotalSwap': total_swap, | |
'FreeSwap': free_swap, | |
'UsedSwap': used_swap, | |
'UtilizedSwap': utilized_swap, | |
} | |
return info | |
def gather_load_info(): | |
"""Gather infomration about CPU load usage""" | |
loadavg_info = {} | |
with open('/proc/loadavg') as loadavg: | |
parsed = loadavg.read().split(' ') | |
loadavg_info['1minLoad'] = float(parsed[0]) | |
loadavg_info['5minLoad'] = float(parsed[1]) | |
loadavg_info['15minLoad'] = float(parsed[2]) | |
with open('/proc/cpuinfo') as cpuinfo: | |
cpu_count = cpuinfo.read().count('processor\t:') | |
loadavg_info['PerCPU1minLoad'] = loadavg_info['1minLoad'] / cpu_count | |
loadavg_info['PerCPU5minLoad'] = loadavg_info['5minLoad'] / cpu_count | |
loadavg_info['PerCPU15minLoad'] = loadavg_info['15minLoad'] / cpu_count | |
return loadavg_info | |
def gather_cpu_usage(): | |
"""Get the cpu used""" | |
return { | |
'UtilizedCPU': psutil.cpu_percent() | |
} | |
def make_disk_info(mount, file_system, total, used, avail): | |
return { | |
'UsedDisk_{}'.format(mount): used, | |
'FreeDisk_{}'.format(mount): avail, | |
'UtilizedDisk-{}'.format(mount): | |
100.0 * used / total if total > 0 else 0 | |
} | |
def gather_disk_info(paths): | |
disks = [] | |
for path in paths.split(','): | |
df_out = [s.split() for s in | |
os.popen('/bin/df -k -P {}'.format(path)).read().splitlines()] | |
for line in df_out[1:]: | |
mount = line[5] | |
file_system = line[0] | |
total = int(line[1]) * 1024 | |
used = int(line[2]) * 1024 | |
avail = int(line[3]) * 1024 | |
disks.append(make_disk_info(mount, file_system, total, used, avail)) | |
return disks | |
metrics = []; | |
ram = gather_mem_info() | |
metrics.append(ram) | |
load = gather_load_info() | |
metrics.append(load) | |
disks = gather_disk_info(monitor_paths) | |
for disk in disks: | |
metrics.append(disk); | |
# have to send 19 at a time | |
length = len(metrics) | |
index = 0 | |
step = 19 | |
while index < length: | |
start = index | |
end = index + step if index + step <= length else length | |
data = metrics[start:end] | |
info = {} | |
for metric in data: | |
info.update(metric) | |
send_multi_metrics(info) | |
index = index + step |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment